Computer Assignment 2

Chapter 2, section 1, problem 3

Matlab commands:

Apes = [70 50;30 60] Diet = [25 40 20;15 30 25] Result = Apes * Diet

Matlab results:

Apes =				
70	50			
30	60			
Diet =				
25	40	20		
15	30	25		
Result	=			
	2500		4300	2650
	1650		3000	2100

The meaning of the calculation:

	young	old			
	70	50	chimpa	anzees	
	30	60	gibbon	S	
X	prot. 25 15	carbo. 40 30	fat 20 25	young old	
=	prot. 2500 1650	carb) 43) 30	oo. 002 002	fat 650 100	young and old chimpanzees young and old gibbons

Chapter 2, section 1, problem 10a

Matlab commands:

A = randint(3,4,5,2)
% RANDINT(m,n,k,r) is an m by n matrix of rank r
% with integer entries in the interval [-k:k].
% If less than three arguments are used the default
% value of k is taken to be 9.
% If only one input argument is used then it is assumed
% that the matrix is square.
% If the last argument is left off, no attempt is made
% to determine the rank.
rref(A)

Matlab results:

A =				
	0	3	0	3
	-3	-2	3	1
	-2	1	2	3
ans	=			
	1	0	-1	-1
	0	1	0	1
	0	0	0	0

```
x1 = [4;-2;2;2];
x2 = [5;-2;3;2];
a = 3; b = -2;
x3 = a * x1 + b * x2
Product1 = A*x1
Product2 = A*x2
Product3 = A*x3
```

Matlab results:

```
x3 =
     2
    -2
     0
     2
Product1 =
     0
     0
     0
Product2 =
     0
     0
     0
Product3 =
     0
      0
      0
```

x1 and x2 are two non-zero non-multiple solutions of Ax = 0. Two values for *a* and *b* were selected at random and x3 was formed by multiplying x1 by *a* and adding to the product of x2 and *b*. Then the products of A*x1, A*x2, and A*x3 were all found to be zero confirming that x1, x2, and x3 are all solutions of Ax = 0.

Therefore it appears that any sum of multiples of solutions of a homogeneous linear system is also a solution of that system.

Chapter 2, section 1, problem 10b

Matlab commands:

```
p = randint(4,1,5)
% RANDINT(m,n,k,r) is an m by n matrix of rank r
% with integer entries in the interval [-k:k].
% If less than three arguments are used the default
% value of k is taken to be 9.
% If only one input argument is used then it is assumed
% that the matrix is square.
% If the last argument is left off, no attempt is made
% to determine the rank.
B = A*p
C = p + 3*x1 + (-2)*x2
B2 = A*C
```

Matlab results:

p = 4 3 0 -5 в = -6 -23 -20 C = 6 1 0 -3 B2 = -6 -23 -20

A random vector p is created and B = A * p is computed so that p is a solution of the nonhomogeneous system Ax = B. Using values from problem 10a, we compute p + a*x1 + b*x2 which is stored in C. To check to see if C is also a solution of Ax = B, we compute B2 = A * C. It is found that B2 = B so therefore p + a*x1 + b*x2 is also a solution of Ax = B. Therefore it appears that any sum of multiples of solutions of a nonhomogeneous linear system is also a solution of that system.

Chapter 2, section 1, problem 14a

Matlab commands:

```
A = [3 2;4 3]

B = [3 -2;-4 3]

DeterminantA = det(A)

DeterminantB = det(B)

AB = A*B

BA = B*A

InverseA = inv(A)

InverseB = inv(B)
```

Matlab results:

```
A =
            2
     3
     4
            3
в =
           -2
     3
    -4
           3
DeterminantA =
     1
DeterminantB =
     1
AB =
     1
            0
     0
            1
BA =
            0
     1
     0
            1
InverseA =
     3
           -2
    -4
            3
InverseB =
     3
            2
     4
            3
```

The definition of an inv	verse matrix	states that "if the
transformation $y = Ax$	is invertible	, its inverse is $x = A^{-1}y$." It
follows that:		
$\mathbf{y} = \mathbf{A}\mathbf{A}^{-1}\mathbf{y}$	and	$x = A^{-1}Ax$
$y/y = AA^{-1}$		$x/x = A^{-1}A$
$1 = AA^{-1}$		$1 = \mathbf{A}^{-1}\mathbf{A}$
and if $A^{-1} = B$ then:		
1 = AB	and	1 = BA
Doth A and B are none	in culor and	therefore invertable since

Both *A* and *B* are nonsingular and therefore invertable since their determinants are not equal to zero. The product of A^*B and B^*A both yield the identity matrix. So it is seen that *A* is the inverse matrix of *B* and that *B* is the inverse matrix of *A*. This is further confirmed by using the Matlab command inv() to find the inverse. Thomas Penick 452 80 6040 M 340L-C February 5, 1998

Chapter 2, section 1, problem 14b

Matlab commands:

```
A = [1 0 1;1 1 0;-1 2 -2]
B = [-2 2 -1;2 -1 1;3 -2 1]
DeterminantA = det(A)
DeterminantB = det(B)
AB = A*B
BA = B*A
InverseA = inv(A)
InverseB = inv(B)
```

Matlab results:

```
A =
   1 0 1
1 1 0
       2 -2
   -1
B =
       2 -1
   -2
   2
       -1
            1
   3 -2
             1
DeterminantA =
   1
DeterminantB =
  1
AB =
       0 0
1 0
0 1
   1
   0
   0
BA =
   1 0 0
0 1 0
0 0 1
InverseA =
  -2 2 -1
       -1 1
   2
   3 -2
            1
InverseB =
   1.0000 0.0000 1.0000
  1.0000 1.0000 0
-1.0000 2.0000 -2.0000
```

Chapter 2, section 1, problem 14c

Matlab commands:

Matlab results:

А =					
	0 1 0 0 0	0 0 1 0 0	0 0 0 1	0 0 1 0	1 0 0 0
B =	0 0 0 1		0 1 0 0 0	0 0 1 0	0 0 1 0 0
Detter	-1				
Dete:	rminant -1	:B =			
AB =					
	1 0 0 0 0	0 1 0 0 0	0 0 1 0 0	0 0 1 0	0 0 0 1
BA =	1 0 0 0 0	0 1 0 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1
Inve	rseA =				
	0 0 0 1	1 0 0 0 0	0 1 0 0 0	0 0 1 0	0 0 1 0 0
Inve	rseB =				
	0 1 0 0 0	0 0 1 0 0	0 0 0 1	0 0 1 0	1 0 0 0 0

Thomas Penick 452 80 6040 M 340L-C February 5, 1998

Chapter 2, section 1, problem 14d

Matlab commands:

A = [1 1 1;1 1 0] B = [1 1;-1 0;1 -1] AB = A*B InverseA = inv(A)

Matlab results:

A = 1 1 1 1 1 0 в = 1 1 -1 0 1 -1 AB = 0 1 0 1 ??? Error using \rightarrow inv Matrix must be square.

Although A * B yields an identity matrix, B is not the inverse matrix of A because neither is a square matrix. Thomas Penick 452 80 6040 M 340L-C February 5, 1998

Chapter 2, section 1, problem 16a

Matlab commands:

```
A = [0.2 0.3 0.4;0.4 0.4 0.1;0.5 0.1 0.3]
I = [1 0 0;0 1 0;0 0 1]
IMinusA = I-A
Determinant = det(I-A)
Inverse = inv(I-A)
```

Matlab results:

А	=						
	(0.2000		0.300	0	0.4000)
	(0.4000		0.400	0	0.1000)
	(0.5000		0.100	0	0.3000)
Ι	=						
		1	0	0			
		0	1	0			
		0	0	1			
IN	linu	usA =					
	(0.8000		-0.300	0 .	-0.4000)
	- (0.4000		0.600	0 .	-0.1000)
	- (0.5000		-0.100	0	0.7000)
De	ete	rminant	: =	-			
	(0.0930					
Ir	ivei	rse =					
	4	4.4086		2.688	2	2.9032	2
		3.5484		3.871	0	2.5806	5
		3.6559		2.473	1	3.8710)

Chapter 2, section 1, problem 16b

Matlab commands:

A = [4.5 0.3 0.4;0.4 0.4 0.1;0.5 0.1 0.3] I = [1 0 0;0 1 0;0 0 1]; IMinusA = I-A Determinant = det(I-A) Inverse = inv(I-A)

Matlab results:

A =		
4.5000	0.3000	0.4000
0.4000	0.4000	0.1000
0.5000	0.1000	0.3000
IMinusA =		
-3.5000	-0.3000	-0.4000
-0.4000	0.6000	-0.1000
-0.5000	-0.1000	0.7000
Determinant	=	
-1.6700		
Inverse =		
-0.2455	-0.1497	-0.1617
-0.1976	1.5868	0.1138
-0.2036	0.1198	1.3293

I - *A* is shown to be non-singular, $(I - A)^{-1}$ exists and has all non-negative entries, therefore $\mathbf{p} = (I - A)^{-1}\mathbf{y}$ exists and has all non-negative entries. This means that $(I - A)\mathbf{p} = \mathbf{y}$ has a solution for every possible demand vector \mathbf{y} .

With the (1,1) entry of *A* having a value of 4.5, *A* is no longer a realistic consumption matrix because this would mean that the input would be higher than the output.

As shown in Matlab, the determinant of I - A is not non-negative.