FET EXPERIMENT

Lab 1 Notes – EE 321K

Given for the prep:

Drain current when in saturation: $I_{DSS} = 2.5 \text{ mA}$

Pinch-off voltage: $V_P = -1$ V

Gate current: $I_G = 0 \text{ mA}$

Slope of output characteristic in saturation $Y_{\alpha s} = 0 \ \Omega^{-1}$

TRANSFER CHARACTERISTIC

The relationship between the drain current and the gate-to-source voltage with the FET in saturation.

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)$$

DC LOAD LINE

The relationship between the drain current and the gate-to-source voltage with the gate at ground potential.

$$I_D = -\frac{1}{R_S} V_{GS}$$

V_{GSQ} , I_{DQ} Q POINT

The DC operating point of the FET, found at the intersection of the above two functions; the point at (V_{GSQ}, I_{DQ}) .

SATURATION REGION

The FET is in the saturation region when $V_{DS} > |V_P|$.

V_{GSQ} DRAIN-TO-SOURCE OPERATING VOLTAGE

The drain-to-source voltage present when the FET is operating at the Q-point.

$$V_{DSQ} = V_{DQ} - V_{SQ} = \left(V_{DD} - I_{DQ}R_d\right) - I_{DQ}R_s$$

Y_{fs} TRANSCONDUCTANCE

The transconductance of the FET model is the rate of change of the drain current in response to a change in the gate-to-source voltage, or the slope of the transfer characteristic curve at the Q-point.

Gate •
+

$$V_{GS}$$
 $V_{fs}V_{GS} \ge 1/Y_{os}$
Source •
 $Y_{fsQ} = g_m = \left|\frac{\partial I_D}{\partial V_{GS}}\right|$

Yos OUTPUT TRANSCONDUCTANCE

The output transconductance of the FET model is the rate of change of the drain current as a function the drain-to-source voltage, or the slope of the output characteristic at the Q-point.

$$Y_{os} = \frac{1}{r_o} = \left| \frac{\partial I_D}{\partial V_{DS}} \right|$$

PSPICE MODEL Lab1withCs.sch

FREQUENCY CORNER DUE TO C₁

The capacitor C_1 produces a low frequency corner.

$$f_{L1} = \frac{1}{2\pi C_1 \left(R_{th} + R_g \right)}$$

FREQUENCY CORNER DUE TO C₂

The capacitor C_2 produces a low frequency corner.

$$f_{L2} = \frac{1}{2\pi C_2 \left[R_d + \left(R_{VM} || R_{SC} \right) \right]}$$

FREQUENCY CORNER DUE TO C_h and C_{sc}

The capacitor C_h and the capacitance due to cables and instruments C_{sc} produce a high frequency corner.

$$f_{H} = \frac{1}{2\pi (C_{h} + C_{sc}) (R_{d} \parallel R_{VM} \parallel R_{SC})}$$

1

DISTORTION ANALYSIS

Given an input sinewave of 0.12V peak. V = V = + 0.12 sin of

 $V_{GS} = V_{GSQ} + 0.12\sin\omega t$

What is the percent second harmonic distortion?. Using the transfer function:

$$I_D = I_{DSS} \underbrace{\left(1 - V_{GS} / V_P\right)^2}_{\text{Only this term needs}}$$

to be evaluated.

Evaluate:

$$\left(1 - \frac{V_{GSQ} + 0.12\sin\omega t}{V_p}\right)^2 = \left(1 - \frac{-0.38 + 0.12\sin\omega t}{-1}\right)^2$$
$$= (0.62 + 0.12\sin\omega t)^2 = (0.0144\sin^2\omega t + 0.148\sin\omega t + 0.3844)$$

Taking the coefficients from the first and second harmonic: $\% 2^{nd}$ harmonic = $\frac{0.0144}{0.1488} \times 100 = 9.6774\%$

