- <u>Function of Two Variables</u>: 15.1 p841 Let *D* be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in *D* there corresponds a real number f(x, y), then *f* is called a **function of** *x* **and** *y*. The set *D* is the **domain** of *f*, and the corresponding set of values for f(x, y) is the **range** of *f*.
- <u>Function of Three Variables</u>: 15.1 p841 For the function given by z = f(x, y), we call x and y the **independent** variables and z the **dependent variable**.
- <u>Neighborhoods in the Plane</u>: 15.2 p853 Using the formula for the distance $\delta > 0$ between two points (x, y) and (x_0, y_0) in the plane, we define the δ -neighborhood about (x_0, y_0) to be the **disc** centered at (x_0, y_0) with radius **d** (that's a "delta").

$$\{(x, y): \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta\}$$

When this formula contains the *less than* inequality, the disc is called **open**, and when it contains the *less than or equal to* inequality, the disc is called **closed**. A point (x_0, y_0) in a plane region *R* is an **interior point** of *R* if there exists a *d*-neighborhood about (x_0, y_0) that lies entirely in *R*. If every point in *R* is an interior point, then we call *R* an **open region**. A point (x_0, y_0) is a **boundary point** of *R* if every open disc centered at (x_0, y_0) contains points inside *R* and points outside *R*. By definition, a region must contain its interior points, but it need not contain its boundary points. If a region contains all its boundary points is neither open nor closed.

<u>Definition of the Limit of a Function of Two Variables</u>: 15.2 p854 Let *f* be a function of two variables defined, except possibly at (x_0, y_0) , on an open disc centered at (x_0, y_0) , and let *L* be a real number. Then

$$\lim_{(x,y)\to(x_*,y_*)}f(x,y)=L$$

if for each e > 0, there corresponds a $\delta > 0$ such that $|f(x, y) - L| < \varepsilon$ whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$ Definition of Continuity of a Function of Two Variables: 15.2 p857 A function *f* of two variables is **continuous at a point** (x_0 , y_0) in an open region *R* if $f(x_0, y_0)$ is defined and is equal to the limit of f(x, y) as (x, y) approaches (x_0, y_0). That is, $\lim_{(x,y)\to(x,y_0)} f(x,y) = f(x_0, y_0)$

The function *f* is **continuous in the open region** *R* if it is continuous at every point in *R*.

<u>Properties of Continuous Functions of Two Variables</u>: 15.2 p857 If *k* is a real number and *f* and *g* are continuous at (x_0 , y_0), then the following functions are continuous at (x_0 , y_0).

Scalar multiple: kfSum and difference: $f \pm g$ Product: fgQuotient: f/g, if $g(x_0, y_0) \neq 0$

<u>Continuity of a Composite Function</u>: 15.2 p858 If *h* is continuous at (x_0, y_0) and *g* is continuous at $h(x_0, y_0)$, then the composite function given by $(g \circ h)(x, y) = g(h(x, y))$ is continuous at (x_0, y_0) . That is,

$$\lim_{(x,y)\to(x_{*},y_{*})}g(h(x,y)) = g(h(x_{0},y_{0}))$$

Definition of Continuity of a Function of Three Variables: 15.2 p859 A function *f* of three variables is **continuous at a point** (x_0 , y_0 , z_0) in an open region *R* if f(x, y, z) is defined and equal to the limit of f(x, y, z) as (x_0 , y_0 , z_0) approaches (x_0 , y_0 , z_0). That is, $\lim_{x \to a} f(x, y, z) = f(x_0, y_0, z_0)$

 $\lim_{(x,y,z)\to(x_{*},y_{*},z_{*})} f(x,y,z) = f(x_{0},y_{0},z_{0})$

<u>Partial Derivatives</u>: 15.3 p863 If z = f(x, y), then the first **partial derivatives** of *f* with respect to *x* and to *y* are the functions f_x and f_y defined by

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

provided the limits exist.

In other words, if z = f(x, y), then to find f_x we consider *y* **constant** and differentiate with respect to *x*. To find f_y we consider *x* **constant** and differentiate with respect to *y*.

<u>Notation for First Partial Derivatives</u>: 15.3 p863 For z = f(x, y), the partial derivatives f_x and f_y are denoted by

$$\frac{\partial}{\partial x} f(x, y) = f_x(x, y) = z_x = \frac{\partial z}{\partial x}$$

and
$$\frac{\partial}{\partial y} f(x, y) = f_y(x, y) = z_y = \frac{\partial z}{\partial y}$$

The first partials evaluated at the point (a, b) are denoted by

$$\frac{\partial z}{\partial x}\Big|_{(a,b)} = f_x(a,b)$$
 and $\frac{\partial z}{\partial y}\Big|_{(a,b)} = f_y(a,b)$

In other words, the values of $\P f / \P x$ and $\P f / \P y$ at the point (x_0, y_0, z_0) denote the **slope of the surface in the x and y directions**.

<u>Higher-order Partial Derivatives</u>: 15.3 p867 We denote high-order partial derivatives by the order in which the differentiation occurs. For instance, the function z = f(x, y) has the following second partial derivatives.

$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$	1. Differentiate twice with respect to <i>x</i> .
$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}$	2. Differentiate twice with respect to <i>y</i> .
$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$	 Differentiate first with respect to x and then with respect to y.
$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}$	 Differentiate first with respect to y and then with respect to x.

Equality of Mixed Partial Derivatives: 15.3 p868 If f is a function of x and y such that f, f_x , f_y , f_{xy} , and f_{yx} are

continuous on an open region R, then for every (x, y) in R,

$$f_{xy}(x,y) = f_{yx}(x,y)$$

Knowledge of **Partial Derivatives** is important for students who will be taking **Differential Equations**.

Increments: For the function z = f(x, y), Δx and Δy are the **increments of** *x* and *y*. The **increments of** *z* is given by

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

Total Differential: 15.4 p871 If z = f(x, y) and Δx and Δy are increments of x and y, then the **differentials** of the independent variables x and y are

$$dx = \Delta x$$
 and $dy = \Delta y$

and the **total differential** of the dependent variable z is

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = f_x(x, y)dx + f_y(x, y)dy$$

<u>Differentiability</u>: 15.4 p872 A function *f* given by z = f(x, y) is **differentiable** at (x_0, y_0) if Δz can be expressed in the form $\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \varepsilon_1\Delta x + \varepsilon_2\Delta y$

where both ε_1 and $\varepsilon_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$. The function *f* is said to be **differentiable in a region** *R* if it is differentiable at each point of *R*.

- <u>Sufficient condition for differentiability</u>: $_{15.4 p873}$ If *f* is a function of *x* and *y*, where *f*, *f_x*, and *f_y* are continuous in an open region *R*, then *f* is differentiable on *R*.
- <u>Differentiability implies continuity</u>: 15.4 p876 If a function of x and y is differentiable at (x_0, y_0) , then it is continuous at (x_0, y_0) .

Chain Rule: one independent variable: 15.5 p879 Let w = f(x, y), where *f* is a differentiable function of *x* and *y*. If x = g(t) and y = h(t), where *g* and *h* are differentiable functions of *t*, then *w* is a differentiable function of *t*, and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}$$

Chain Rule: two independent variables: 15.5 p882 Let w = f(x, y), where *f* is a differentiable function of *x* and *y*. If x = g(s, t) and y = h(s, t) such that the first partials f(x) / f(s), f(x) / f(t), f(y) / f(s), and f(y) / f(t) all exist, then f(w) / f(s) and f(w) / f(t) exist and are given by

 $\frac{\cancel{l}w}{\cancel{l}s} = \frac{\cancel{l}w}{\cancel{l}x}\frac{\cancel{l}x}{\cancel{l}s} + \frac{\cancel{l}w}{\cancel{l}y}\frac{\cancel{l}y}{\cancel{l}s} \quad \text{and} \quad \frac{\cancel{l}w}{\cancel{l}t} = \frac{\cancel{l}w}{\cancel{l}x}\frac{\cancel{l}x}{\cancel{l}t} + \frac{\cancel{l}w}{\cancel{l}y}\frac{\cancel{l}y}{\cancel{l}t}$

<u>Chain Rule:</u> implicit differentiation: 15.5 p884 If the equation f(x, y) = 0 defines y implicitly as a differentiable function of x, then

$$\frac{dy}{dx} = -\frac{F_x(x, y)}{F_y(x, y)}, \quad F_y(x, y) \neq 0$$

If the equation F(x, y, z) = 0 defines z implicitly as a differentiable function of x and y, then

$$\frac{\P z}{\P x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)} \quad \text{and}$$
$$\frac{\P z}{\P y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}, \quad F_z(x, y, z) \neq 0$$

Directional Derivative: $_{15.6 p888}$ Let *f* be a function of two variables *x* and *y* and let $\vec{u} = \cos \theta i + \sin \theta j$ be a unit vector. Then the **directional derivative of** *f* **in the direction of** *u*, denoted by $D_{uf} f$ is

$$D_{u}f(x, y) = \lim_{t \to 0} \frac{f(x + t \cos q, y + t \sin q) - f(x, y)}{t}$$

If *f* is a differentiable function of *x* and *y*, then the directional derivative of *f* in the direction of the unit vector $\vec{u} = \cos \theta i + \sin \theta j$ is

$$D_u f(x, y) = f_x(x, y) \cos \theta + f_y(x, y) \sin \theta$$

An **alternate form** of the directional derivative is: $D_u f(x, y) = \nabla f(x, y) \cdot u$

<u>Gradient</u> of a function of two variables: 15.6 p890</u> If z = f(x, y), then the **gradient** of *f*, denoted by $\nabla f(x, y)$, is the vector

 $\nabla f(x, y) = f_x(x, y)i + f_y(x, y)j$

We read ∇f as "del *f*". Another notation for the gradient is **grad** f(x, y).

<u>Properties of the **gradient**</u>: $_{15.6 p892}$ Let *f* be differentiable at the point (*x*, *y*).

- 1. If $\nabla f(x, y) = 0$, then $D_u f(x, y) = 0$ for all u.
- 2. The direction of *maximum* increase of *f* is given by $\nabla f(x, y)$. The maximum value of $D_u f(x, y)$ is $\|\nabla f(x, y)\|$.

- 3. The direction of *minimum* increase of *f* is given by $-\nabla f(x, y)$. The minimum value of $D_u f(x, y)$ is $-\|\nabla f(x, y)\|$.
- To visualize one of the properties of the **gradient**, imagine a skier coming down a mountainside. If f(x, y) denotes the altitude of the skier, then $-\nabla f(x, y)$ indicates the *compass direction* the skier should take to ski the path of steepest descent. The *gradient* indicates direction in the *xy* plane and does not itself point up or down the mountainside.
- **Gradient** is normal to level curves: 15.6 p894 If *f* is differentiable at (x_0, y_0) , and $\nabla f(x_0, y_0) \neq 0$, then $\nabla f(x_0, y_0)$ is normal to the level curve through (x_0, y_0) .
- **Directional Derivative and Gradient** for a function of three variables: $_{15.6 p895}$ Let *f* be a function of *x*, *y*, and *z*, with continuous first partial derivatives. The **directional derivative of** *f* in the direction of a unit vector u = ai + bj + ck is given by

 $D_{u}f(x, y, z) = af_{x}(x, y, z) + bf_{y}(x, y, z) + cf_{z}(x, y, z)$

The gradient of f is defined to be

 $\nabla f(x, y, z) = f_x(x, y, z)i + f_y(x, y, z)j + f_z(x, y, z)k$

- <u>Tangent Plane and Normal Line</u>: 15.7 p898 Let *F* be differentiable at the point $P = (x_0, y_0, z_0)$ on the surface *S* given by F(x, y, z) = 0 such that $\nabla F(x_0, y_0, z_0) \neq 0$.
- 1. The plane through *P* that is normal to $\nabla F(x_0, y_0, z_0)$ is called the **tangent plane** to *S* at *P*.
- 2. The line through *P* having the direction of $\nabla F(x_0, y_0, z_0)$ is called the **normal line** to *S* at *P*.

Equation of Tangent Plane: 15.7 p899 If *F* is differentiable at (x_0, y_0, z_0) , then an equation of the tangent plane to the surface given by F(x, y, z) = 0 at (x_0, y_0, z_0) is $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$

Symmetric equation of a normal line:

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

$$\cos \boldsymbol{q} = \frac{\left|\boldsymbol{n} \cdot \boldsymbol{k}\right|}{\left\|\boldsymbol{n}\right\| \left\|\boldsymbol{k}\right\|} = \frac{\left|\boldsymbol{n} \cdot \boldsymbol{k}\right|}{\left\|\boldsymbol{n}\right\|} \quad \text{or}$$
$$\cos \boldsymbol{q} = \frac{1}{\sqrt{\left[f_{x}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right]^{2} + \left[f_{y}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right]^{2} + 1}}$$

- <u>Gradient is Normal to level surfaces</u>: 15.7 p904 If *F* is differentiable at (x_0, y_0, z_0) and $\nabla F(x_0, y_0, z_0) \neq 0$, then $\nabla F(x_0, y_0, z_0)$ is normal to the level surface through (x_0, y_0, z_0) .
- Extreme Value Theorem: $_{15.8 \text{ p906}}$ Let *f* be a continuous function of two variables *x* and *y* defined on a closed bounded region *R* in the *xy*-plane.
- 1. There is at least one point in R where f takes on a minimum value.
- 2. There is at least one point in R where f takes on a maximum value.
- <u>Relative Extrema</u>: 15.8 p906 Let *f* be a function defined on a region *R* containing (x_0, y_0) .
- 1. $f(x_0, y_0)$ is a **relative minimum** of f if $f(x, y) \ge f(x_0, y_0)$ for all (x, y) in an open disc containing (x_0, y_0) .
- 2. $f(x_0, y_0)$ is a **relative maximum** of f if $f(x, y) \le f(x_0, y_0)$ for all (x, y) in an open disc containing (x_0, y_0) .
- <u>Critical Point</u>: 15.8 p906 Let *f* be defined on an open region *R* containing (x_0, y_0) . We call (x_0, y_0) a **critical point** of *f* if one of the following is true.
- <u>Relative extrema occur only at Critical Points</u>: 15.8 p907 If $f(x_0, y_0)$ is a relative extremum of f on an open region R, then (x_0, y_0) is a critical point of f.
- **Second-Partials Test for relative extrema**: 15.8 p909 Let *f* have continuous first and second partial derivatives on an open region containing a point (a, b) for which $f_x(a, b) = 0$ and $f_y(a, b) = 0$. To test for relative extrema of *f*, we define the quantity

$$d = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$$

- 1. If d > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a relative minimum.
- 2. If d > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a **relative** maximum.
- 3. If d < 0, then (a, b, f(a, b)) is a saddle point.
- 4. The test gives no information if d = 0.

Least squares regression line: 15.9 p916 The least squares regression line for $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is given by f(x) = ax + b, where

$$a = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \quad \text{and} \quad b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i\right)$$

Lagrange's Theorem: Let f and g have continuous first partial derivatives such that f has an extremum at a point (x_0, y_0) on the smooth constraint curve g(x, y) = c. If $\nabla g(x_0, y_0) \neq 0$, then there is a real number λ (lambda) such that

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

- <u>Method of Lagrange multipliers</u>: 15.10 p921 Let *f* and *g* satisfy the hypothesis of Lagrange's Theorem, and let *f* have a minimum or maximum subject to the <u>constraint</u> g(x, y) = c. The method may be used for functions of multiple variables. To find the minimum or maximum of *f*, use the following steps.
- 1. Simultaneously solve the equations g(x, y) = c and $\nabla f(x, y) = I \nabla g(x, y)$ by solving the following system of equations.

$$f_x(x, y) = Ig_x(x, y)$$
 (solve for lambda)

$$f_{y}(x, y) = Ig_{y}(x, y)$$
 (solve for lambda)

Set the two equal to each other and solve for variables.

g(x, y) = c (substitute in variables)

Substitute the results into the original equation.

2. Evaluate *f* at each solution point obtained in the first step and at each endpoint (if any) of the constraint curve. The largest value yields the maximum of *f* subject to the constraint g(x, y) = c, and the smallest value yields the minimum of *f* subject to the constraint g(x, y) = c.

Tom Penick tomzap@eden.com www.teicontrols.com/notes 1/28/98