
Tom Penick 
EE 325K  Homework 10, November 30, 2000 

Problem: 

Write a 2D FDTD (finite difference time 
domain) computer code to simulate wave 
propagation due to a line current Jz at 
(5m,10m).  Plot Ez at (15m, 10m) from 0 to 
200 ns. 
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T = 10 ns,  ∆ = 0.1 m,  ∆t = 0.2 ns 
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Diagram from the problem statement showing the area of 
calculation. 

 
 
 

meters
0

Hx(1,1)

Ez(1,1)

Hy(1,1)

Ez(HiX+1,HiY+1)

Hx(HiX+1,HiY)

Hy(HiX,HiY+1)

.3.2.1

.2

.3

19.9

19.8

19.7

20

 
Detail showing the upper right and lower left corners of the Yee grid.  This shows 
how matrix elements written in Matlab code correspond to Hx, Hy, and Ez of the 
Yee grid.  Matlab rows are the x-values (i-values) and Matlab columns are the y-
values (j-values). 
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Hx is calculated based on 
the past value of Hx and the 
values of Ez above and 
below 
 

 

Hy is calculated 
based on the past 
value of Hy and the 
values of Ez to the 
left and right 
 
 

 

Ez is calculated based on the past 
value of Ez and the values of Hx 
above and below, and the values of 
Hy to the left and right. 

 

Detail showing how the Matlab calculations propagate through the Yee grid. 
 



The project was done using Matlab.  Two 
201×201 matrices are created for present and 
future values of Ez, one 200×200 matrix is 
created for Jz, one 201×200 matrix for Hx, and 
one 200×200 matrix for Hy.  These values are 
easily scaled for other problems by changing 
parameters in the first section of the code.  
Execution time using a Celeron 450 MHz 
processor is 93 seconds. 

The wave calculations propagate by one grid 
point (δ = 0.1m) horizontally and vertically each 
time step (∆t = 0.2 ns).  So propagation to a 
diagonal grid point takes two time steps 
(2∆t = 0.4 ns).  The propagation of calculations 
(not the wave itself) along the direct path from 

source to observation point takes ∆t×10m/δ = 20 
ns.  The reflected path from the perfect 
conductor takes a minimum of ∆t×30m/δ = 60 ns 
for the calculation and 22m/c = 73.4 ns for the 
wave propagation.  Should there be a reflection 
from the nearest "absorbing" boundary, that 
would take ∆t×20m/δ = 40 ns for the calculations 
to propagate, and 20m/c = 66.7 ns for the wave 
to propagate at the speed of light.  I am using the 
MUR1 method for dealing with boundaries, so 
some error is possible. 

At the speed of light, the wave should propagate 
from source to observation point in 33.4 ns.  
Since the propagation of calculations for this 
path is 20 ns, it should be possible to produce a 

The problem result. The electric field Ez at the observation point is shown with a bold line 
using the scale at left, and the input current Jz is shown with a thin line at the bottom of the 
plot using the scale at right. 

 



realistic result using ∆t = 0.2 ns and δ = 0.1 m.  
The plot confirms this, showing a 32 ns interval 
from t = 0 until the disturbance is seen at the 
observation point.  At this point, the observed 
electric field swings negative in response to the 
increasing current Jz.  The duration of this 
negative swing is about 10 ns, 
same as the ramp time for Jz.  
With Jz a constant 2 amps, the 
response is an exponential 
decay of the electric field at the 
observation point. 

At t = 74 ns the electric field 
moves sharply positive.  This 
is the amount of time required 
for a reflection from the perfect 
conductor to reach the 
observation point 
(22m/c = 73.4 ns).  The 
duration of this positive swing 
is about 10 ns, corresponding 
to the ramp time for Jz.  
Following this positive swing, 
another exponential decay is 
observed terminating in a 
sharply negative swing at 94 
ns.  The negative direction and 
the remaining strength of the response suggests a 
2-reflection wave that uses the perfect conductor 
for at least one reflection.  It is found that a wave 
reflecting first from the perfect conductor and 
then from the right-hand "absorbing" boundary 

would have a path length of 28.3 meters yielding 
a propagation time of 28.3m/c = 94.3 ns.  This 
appears to be the cause of the second steep, 
almost linear downward excursion and points out 
a problem with the MUR1 method of handling 
the absorbing boundary. 

Following this excursion, the Ez component 
begins to return exponentially (more or less) to 
zero with some minor ripples evidently due to 
other reflections. 
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The 2D FDTD Equations 
 

where i is a value on the horizontal axis, j is a value on the vertical axis, and n is a time value. 
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MUR1 Absorbing Boundary Conditions 
 

where N is the boundary element (opposite 0) 
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MUR2 Absorbing Boundary Conditions 
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(Right boundary and top boundary are similarly modified.) 
 



MATLAB CODE 
 
function FDT2() 

%   Finite Difference Time Domain, EE325K HW 10, by Tom Penick 
%   This function plots Ez at (15m, 10m) from 0<t<200 ns in response 
%   to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T. 
%   Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m) 

% INDEXING CONVENTIONS:  Since the problem calls for indices with some integer+1/2 values and Matlab uses 
%   only whole number indexing, I need a plan.  For the first three expressions, the matrices calculated   
%   are the interior matrices which do not include the boundary rows and columns.   
%   (Those rows and columns are present, I just exclude them when calculating.) The other matrices in the  
%   calculations are shifted as required with respect to these defining matrices.  Matrix row indices  
%   correspond to graphical X positions and matrix column indices correspond to graphical Y positions,  
%   e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the  
%   graphical representation (except for the Hx matrix where it's Y=1/2). 
 
%*******************  VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS  ************************************* 

T = 10e-9; t = 0; TT = 200e-9;           % ramp time 10 ns, start time 0 s, plot duration 200 ns 
JzLoc = [5 10];                          % initial source current location 
sRange = [0 20]; sDomain = [0 20];       % solution domain, y=sRange x=sDomain 
D = .1;                                  % spatial discretization, delta 
dt = .2e-9                               % time discretization, delta t = 0.2 ns 
EzObs = []; Time = []; JzPlt = [];       % matrices, observed Ez and time for plotting 
EzLoc = [15 10];                         % location of the observation point 
uo = 1.25663706144e-6;                   % permiability of free space 
eo = 8.85418781762e-12;                  % permittivity of free space 
c = 299.792458e6;                        % speed of light 
HiX = (sDomain(2)-sDomain(1))/D;         % one less than the number of X-values (rows) 
HiY = (sRange(2)-sRange(1))/D;           % one less than the number of Y-values (columns) 
Jz = zeros([HiX-1,HiY-1]);               % create current source matrix that doesn't include boundaries 
Ez = zeros([HiX+1,HiY+1]);               % create electric field matrix that includes boundaries 
Hx = zeros([HiX+1,HiY]);                 % create magnetic field matrix that includes left & right boundaries 
Hy = zeros([HiX,HiY+1]);                 % create magnetic field matrix that includes upper & lower boundaries 
Ezp=Ez;                                  % create matrices for present grid values, Ez-n 
Courant = D/2^.5/c                       % Courant stability condition, must be > dt 
                                         % Do some precalculations to speed this dog up. 
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later 
 
%*****************************  THE EXPRESSIONS TO CALCULATE  *********************************************** 

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));'; 
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));'; 
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-

1))-M3.*Jz;'; 
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));'; 
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));'; 
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));'; 
 
%**********************************  THE PROGRAM CODE  ****************************************************** 

while t<=TT 
  if t <= T                                  % select the proper value for Jz 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but  
    JzPlt = [JzPlt 1-cos(pi*t/T)];           %   since it is the 0th row and column that are dropped, no  
  else                                       %   correction is needed to index the source current location. 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=2;             % the source current, Jz, after t = T 
    JzPlt = [JzPlt 2];                       % the source current, Jz, saved for plotting 
  end 
  eval(ExprHx); eval(ExprHy); eval(ExprEz);  % evaluate the first three expressions 
  eval(MURlft); eval(MURrgt); eval(MURtop);  % evaluate the MUR1 calculations for the perimeter 
  EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting 
  Time = [Time t]; t = t+dt;                 % save the time value for plotting, then increment the time 
  Ezp = Ez;                                  % transfer the new values to the matrices for the past values 
end 
 
%**************************  PLOT Ez AND Jz VERSUS TIME  **************************************************** 

figure('Position',[-10 -110 1700 1100])                                      % gimme a big window 
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on;                         % dual y-axis plot 
set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2]);                % left-hand y-axis settings 
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2]);                            % right-hand y-axis settings 
set(H1,'LineWidth',2);                                                       % set the line width 
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0])      % title 
xlabel('Time {\itt}  [seconds]','FontSize',16, 'Color',[0 0 0])              % x-axis label 
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt})  [V/m]','FontSize',16, 'Color',[0 0 0])) 



Optional Part 
Tom Penick, EE 325K  Homework 10 
 

Problem: 

Study the propagation loss due to a structure 
blocking direct transmission to the 
observation point.   

Line current Jz at (2m,10m).  Plot Ez at 
(18m, 10m) from 0 to 200 ns. 
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T = 10 ns,  ∆ = 0.1 m,  ∆t = 0.2 ns 

 

Perfect conductor

Source

5 10 15 200
x

Jx

5

10

15

20

y

Absorbing boundary

Observation point

Building (perfect conductor)     

 

Diagram of the calculation area showing the 
obstructing building at its 12 meter height. 

 
 

  

  



Propagation Loss Due to a Structure 

For this experiment I have moved the source and 
observation points further apart to (2m,10m) and 
18m,10m) respectively.  The source current Jz is 
now a sinusoidal wave and the observation time 
period has been increased to 300 ns to allow the 
sinusoidal response to stabilize.  A "building" has 
been erected between the source and observation 
point. The building is modeled as a perfect 
conductor.  Its height is varied for the four plots to 
observe the result of the signal blockage. 

The 2 App source current is plotted in the lower 
portion of the graph and the response Ez is plotted 
in the upper portion.  The scale of the first plot of 
Ez has been changed to accommodate the much 
higher amplitude of the unobstructed response. 

In the first plot shown on the preceding page, the 
building is only 8 meters high so that it does not 
obstruct the line of sight path between source and 
observation point.  The observed electric field is 
0.26 Vpp/m.  When the building height is 
increased to 12 meters, 2 meters higher than the 
line of sight path, the observed voltage drops to 
0.06 Vpp/m.  The third and fourth plots are for 
building heights of 14 and 16 meters respectively.  
Steady state voltage response at the observation 
point is 0.03 Vpp/m and 0.02 Vpp/m for the two 
cases. 

3D Observation of the Wave Encountering 
the Building 

To observe the effects of the wave encountering 
the building, I returned the source Jz to its original 
pulse configuration and plotted 3D graphs of the 
pulse-induced wave encountering the side of the 
building.  On the following page is a series of 15 
time lapse views of the absolute value of the 
electric field from t = 12.5 ns to 47.5 ns.  This 

appears as a mirror image of my original problem 
statement diagram, with the source now located 
on the right side of the building and the ground in 
the left foreground.  It can be seen that the MUR1 
absorbing boundary condition allows the electric 
field to flow across the boundary in the right 
foreground while the field remains anchored to 
zero at ground.  A steep gradient appears next to 
the building and ground and a strong peak is 
observed at the upper corner of the building. 

MUR2 Attempt 

I revised the Matlab code for the original problem 
statement to employ the MUR2 method of 
handling absorbing boundary conditions as 
described by G. Mur in IEEE Trans. 
Electromagnetic Compatibility, vol. 23, pp. 377-
382, Nov. 1981.  This revision extended the 
execution time of the program from 93 seconds to 
100 seconds.  Unfortunately the result produced 
instability at t = 80 ns.  I have tried experimenting 
with different values of ∆t and δ, with no success. 
 

 
Implementation of MUR2, showing instability. 



This is a 3D time lapse series of the absolute value of the electric field Ez in response to a 2-Amp 
10 ns impulse Jz, showing the effect of the wave encountering the 16-meter building. 
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MATLAB CODE (Optional part – loss due to a building) 
 
function FDT3() 

%   Finite Difference Time Domain, EE325K HW 10, Optional part, by Tom Penick 
%   This function plots Ez at (18m, 10m) from 0<t<300 ns in response 
%   to signal Jz(t) = 1-cos(pi*t/T).  Jz(t) is located at (2m, 10m). A building  
%   (perfect conductor) blocks the direct path between current source and  
%   observation point.  The solution domain is (0-20m, 0-20m). 

% INDEXING CONVENTIONS:  Since the problem calls for indices with some integer+1/2 values and Matlab uses 
%   only whole number indexing, I need a plan.  For the first three expressions, the matrices calculated   
%   are the interior matrices which do not include the boundary rows and columns.   
%   (Those rows and columns are present, I just exclude them when calculating.) The other matrices in the  
%   calculations are shifted as required with respect to these defining matrices.  Matrix row indices  
%   correspond to graphical X positions and matrix column indices correspond to graphical Y positions,  
%   e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the  
%   graphical representation (except for the Hx matrix where it's Y=1/2). 
% HANDLING THE BUILDING:  I will allow field points to be calculated as before in function FDT2().  But  
%   after each iteration dt, I will reset the E-field values on and within the perimeter of the building  
%   lines to zero.  This will keep the H-field within the building at zero. 
 
%*******************  VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS  ************************************* 

T = 10e-9; t = 0; TT = 300e-9;           % ramp time 10 ns, start time 0 s, plot duration 200 ns 
JzLoc = [2 10]; EzLoc = [18 10];         % source current and observation point locations 
Bldg = [8 12 16];                        % location parameters of the building [left right height] 
sRange = [0 20]; sDomain = [0 20];       % solution domain, y=sRange x=sDomain 
D = .1;                                  % spatial discretization, delta 
dt = .2e-9                               % time discretization, delta t = 0.2 ns 
EzObs = []; Time = []; JzPlt = [];       % matrices, observed Ez and time for plotting 
uo = 1.25663706144e-6;                   % permiability of free space 
eo = 8.85418781762e-12;                  % permittivity of free space 
c = 299.792458e6;                        % speed of light 
HiX = (sDomain(2)-sDomain(1))/D;         % one less than the number of X-values (rows) 
HiY = (sRange(2)-sRange(1))/D;           % one less than the number of Y-values (columns) 
Jz = zeros([HiX-1,HiY-1]);               % create current source matrix that doesn't include boundaries 
Ez = zeros([HiX+1,HiY+1]);               % create electric field matrix that includes boundaries 
Hx = zeros([HiX+1,HiY]);                 % create magnetic field matrix that includes left & right boundaries 
Hy = zeros([HiX,HiY+1]);                 % create magnetic field matrix that includes upper & lower boundaries 
Ezp=Ez;                                  % create matrix for present grid values, Ex-n 
Courant = D/2^.5/c                       % Courant stability condition, must be > dt 
                                         % Do some precalculations to speed this dog up. 
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later 
 
%*****************************  THE EXPRESSIONS TO CALCULATE  *********************************************** 

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));'; 
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));'; 
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3.*Jz;'; 
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));'; 
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));'; 
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));'; 
 
%**********************************  THE PROGRAM CODE  ****************************************************** 

while t<=TT 
  Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T);   % Jz (current) is 2x2 smaller than the other matrices, but  
  JzPlt = [JzPlt 1-cos(pi*t/T)];             % since it is the 0th row and column that are dropped, no  
                                             % correction is needed to index the source current location. 
  eval(ExprHx); eval(ExprHy); eval(ExprEz);  % evaluate the first three expressions 
  eval(MURlft); eval(MURrgt); eval(MURtop);  % evaluate the MUR1 calculations for the perimeter 
  EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting 
  Time = [Time t]; t = t+dt;                 % save the time value for plotting, then increment the time 
  Ezp = Ez;                                  % transfer the new values of Ex to the matrix for the past values 
                                             % return the building E-field to zero 
  Ezp(Bldg(1)/D+1:Bldg(2)/D+1,1:Bldg(3)/D+1) = zeros((Bldg(2)-Bldg(1))/D+1,(Bldg(3))/D+1); 
end 
 



%**************************  PLOT Ez VERSUS TIME  ********************************************************** 

figure('Position',[-10 -110 1700 1100])                                      % gimme a big window 
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on;                         % dual y-axis plot 
%set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2],'FontSize',14);   % left-hand y-axis settings 
set(Ax(1),'Ylim',[-.1 .05],'Ytick',[-.1 -.075 -.05 -.025 0 .025 .05],'FontSize',14);   % left-hand y-axis 
settings 
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2],'FontSize',14);              % right-hand y-axis settings 
set(H1,'LineWidth',2);                                                       % set the line width 
title('{\itE{_z}}(18,10), Building Height 16m', 'FontSize',18, 'Color',[0 0 0])    % title 
xlabel('Time {\itt}  [seconds]','FontSize',16, 'Color',[0 0 0])              % x-axis label 
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt})  [V/m]','FontSize',16, 'Color',[0 0 0])) 
 
 
 
 
 

MATLAB CODE (Optional part – 3D Graphics) 
 
function FDT4() 
%   Finite Difference Time Domain, EE325K HW 10, Optional part, by Tom Penick 
%   3D experiment 
%   This function plots Ez at (18m, 10m) from 0<t<300 ns in response 
%   to signal Jz(t) = 1-cos(pi*t/T).  Jz(t) is located at (2m, 10m). A building  
%   (perfect conductor) blocks the direct path between current source and  
%   observation point.  The solution domain is (0-20m, 0-20m). 

% INDEXING CONVENTIONS:  Since the problem calls for indices with some integer+1/2 values and Matlab uses 
%   only whole number indexing, we need a plan.  For the first three expressions, the matrices calculated   
%   are the interior matrices which do not include the boundary rows and columns.   
%   (Those rows and columns are present, we just exclude them when calculating.) The other matrices in the  
%   calculations are shifted as required with respect to these defining matrices.  Matrix row indices  
%   correspond to graphical X positions and matrix column indices correspond to graphical Y positions,  
%   e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the  
%   graphical representation (except for the Hx matrix where it's Y=1/2). 
% HANDLING THE BUILDING:  I will allow field points to be calculated as in the problem without the 
%   building present as in function FDT2().  But after each iteration dt, I will reset the E-field values  
%   on and within the perimeter of the building lines to zero.  This will keep the H-field within the  
%   building at zero. 

%*******************  VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS  ************************************* 

T = 10e-9; t = 0; TT = 50e-9;           % ramp time 10 ns, start time 0 s, plot duration 200 ns 
JzLoc = [2 10]; EzLoc = [18 10];         % source current and observation point locations 
Bldg = [8 12 16];                        % location parameters of the building [left right height] 
sRange = [0 20]; sDomain = [0 20];       % solution domain, y=sRange x=sDomain 
D = .1;                                  % spatial discretization, delta 
dt = .2e-9;                              % time discretization, delta t = 0.2 ns 
EzObs = []; Time = []; JzPlt = [];       % matrices, observed Ez and time for plotting 
uo = 1.25663706144e-6;                   % permiability of free space 
eo = 8.85418781762e-12;                  % permittivity of free space 
c = 299.792458e6;                        % speed of light 
HiX = (sDomain(2)-sDomain(1))/D;         % one less than the number of X-values (rows) 
HiY = (sRange(2)-sRange(1))/D;           % one less than the number of Y-values (columns) 
Jz = zeros([HiX-1,HiY-1]);               % create current source matrix that doesn't include boundaries 
Ez = zeros([HiX+1,HiY+1]);               % create electric field matrix that includes boundaries 
Hx = zeros([HiX+1,HiY]);                 % create magnetic field matrix that includes left & right boundaries 
Hy = zeros([HiX,HiY+1]);                 % create magnetic field matrix that includes upper & lower boundaries 
Ezp=Ez;                                  % create matrix for present grid values, Ex-n 
Courant = D/2^.5/c;                      % Courant stability condition, must be > dt 
Repeat = 2.5e-9; 
                                         % Do some precalculations to speed this dog up. 
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later 

%*****************************  THE EXPRESSIONS TO CALCULATE  *********************************************** 

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));'; 
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));'; 
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3.*Jz;'; 
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));'; 
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));'; 
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));'; 



%**********************************  THE PROGRAM CODE  ****************************************************** 

Cnt=4; 
while t<=TT 
  if t <= T                                  % select the proper value for Jz 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but  
    JzPlt = [JzPlt 1-cos(pi*t/T)];           % since it is the 0th row and column that are dropped, no  
                                             % correction is needed to index the source current location. 
  else 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=2;             % the source current, Jz, after t = T 
    JzPlt = [JzPlt 2];                       % the source current, Jz, saved for plotting 
  end 
  eval(ExprHx); eval(ExprHy); eval(ExprEz);  % evaluate the first three expressions 
  eval(MURlft); eval(MURrgt); eval(MURtop);  % evaluate the MUR1 calculations for the perimeter 
  EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting 
  if t >= Cnt*Repeat & t < Cnt*Repeat + dt   % create a series of 3D plots 
    figure('Position',[-10 -110 1000 800])   % gimme a big window 
    [X,Y] = meshgrid(0:.1:20);               % Create a grid 
    surf(X,Y,abs(Ez)) 
    set(gca,'Zlim',[0 .5],'FontSize',14);    % z-axis settings 
    colormap hot 
    shading interp 
    Cnt = Cnt+1; 
  end 
  Time = [Time t]; t = t+dt;                 % save the time value for plotting, then increment the time 
  Ezp = Ez;                                  % transfer the new values of Ex to the matrix for past values 
                                             % return the building E-field to zero 
  Ezp(Bldg(1)/D+1:Bldg(2)/D+1,1:Bldg(3)/D+1) = zeros((Bldg(2)-Bldg(1))/D+1,(Bldg(3))/D+1); 
end 

%**************************  PLOT Ez VERSUS TIME  ********************************************************** 

figure('Position',[-10 -110 1100 800])                                       % gimme a big window 
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on;                         % dual y-axis plot 
%set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2],'FontSize',14); % left-hand y-axis settings 
set(Ax(1),'Ylim',[-.1 .05],'Ytick',[-.1 -.075 -.05 -.025 0 .025 .05],'FontSize',14); % left-hand y-axis settings 
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2],'FontSize',14);              % right-hand y-axis settings 
set(H1,'LineWidth',2);                                                       % set the line width 
title('{\itE{_z}}(18,10), Building Height 16m', 'FontSize',18, 'Color',[0 0 0])    % title 
xlabel('Time {\itt}  [seconds]','FontSize',16, 'Color',[0 0 0])              % x-axis label 
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt})  [V/m]','FontSize',16, 'Color',[0 0 0])) 
 
 
 
 
 

MATLAB CODE (Optional part – MUR2) 
 
function FDT5() 
%   Finite Difference Time Domain, EE325K HW 10, MUR2 Optional Part, by Tom Penick 
%   This function plots Ez at (15m, 10m) from 0<t<200 ns in response 
%   to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T. 
%   Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m) 
%    
% INDEXING CONVENTIONS:  Since the problem calls for indices with some integer+1/2 values and Matlab uses 
%   only whole number indexing, we need a plan.  For the first three expressions, the matrices calculated   
%   are the interior matrices which do not include the boundary rows and columns.   
%   (Those rows and columns are present, we just exclude them when calculating.) The other matrices in the  
%   calculations are shifted as required with respect to these defining matrices.  Matrix row indices  
%   correspond to graphical X positions and matrix column indices correspond to graphical Y positions,  
%   e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the  
%   graphical representation (except for the Hx matrix where it's Y=1/2). 



%*******************  VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS  ************************************* 

T = 10e-9; t = 0; TT = 200e-9;           % ramp time 10 ns, start time 0 s, plot duration 200 ns 
JzLoc = [5 10];                          % initial source current location 
sRange = [0 20]; sDomain = [0 20];       % solution domain, y=sRange x=sDomain 
D = .1;                                  % spatial discretization, delta 
dt = .2e-9                               % time discretization, delta t = 0.2 ns 
EzObs = []; Time = []; JzPlt = [];       % matrices, observed Ez and time for plotting 
EzLoc = [15 10];                         % location of the observation point 
uo = 1.25663706144e-6;                   % permiability of free space 
eo = 8.85418781762e-12;                  % permittivity of free space 
c = 299.792458e6;                        % speed of light 
HiX = (sDomain(2)-sDomain(1))/D;         % one less than the number of X-values (rows) 
HiY = (sRange(2)-sRange(1))/D;           % one less than the number of Y-values (columns) 
Jz = zeros([HiX-1,HiY-1]);               % create current source matrix that doesn't include boundaries 
Ez = zeros([HiX+1,HiY+1]);               % create electric field matrix that includes boundaries 
Hx = zeros([HiX+1,HiY]);                 % create magnetic field matrix that includes left & right boundaries 
Hy = zeros([HiX,HiY+1]);                 % create magnetic field matrix that includes upper & lower boundaries 
Ezp=Ez;                                  % create matrix for present grid values, Ex-n 
Courant = D/2^.5/c                       % Courant stability condition, must be > dt 
                                         % Do some precalculations to speed this dog up. 
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); M5=uo*c/(2*(c*dt+D));% some multipliers to be used later 

%*****************************  THE EXPRESSIONS TO CALCULATE  *********************************************** 

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));'; 
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));'; 
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3*Jz;'; 
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY))-M5*(Hx(1,2:HiY)-Hx(1,1:HiY-1)+Hx(2,2:HiY)-
Hx(2,1:HiY-1));'; 
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY))-M5*(Hx(HiX+1,2:HiY)-Hx(HiX+1,1:HiY-
1)+Hx(HiX,2:HiY)-Hx(HiX,1:HiY-1));'; 
MURtop = 'Ez(2:HiX,HiY+1)=Ezp(2:HiX,HiY)+M4*(Ez(2:HiX,HiY)-Ezp(2:HiX,HiY+1))-M5*(Hy(2:HiX,HiY+1)-Hy(1:HiX-
1,HiY+1)+Hy(2:HiX,HiY)-Hy(1:HiX-1,HiY));'; 
Corners = 'Ez(1,HiY+1)=Ez(2,HiY); Ez(HiX+1,HiY+1)=Ez(HiX,HiY);';  % Copy the adjacent diagonals to the corners 

%**********************************  THE PROGRAM CODE  ****************************************************** 

while t<=TT 
  if t <= T                                  % select the proper value for Jz 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but  
    JzPlt = [JzPlt 1-cos(pi*t/T)];           % since it is the 0th row and column that are dropped, no  
                                             % correction is needed to index the source current location. 
  else 
    Jz(JzLoc(1)/D,JzLoc(2)/D)=2;             % the source current, Jz, after t = T 
    JzPlt = [JzPlt 2];                       % the source current, Jz, saved for plotting 
  end 
  eval(ExprHx); eval(ExprHy); eval(ExprEz);  % evaluate the first three expressions 
  eval(MURlft); eval(MURrgt); eval(MURtop); eval(Corners); % evaluate the MUR2 calculations for the perimeter 
  EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting 
  Time = [Time t]; t = t+dt;                 % save the time value for plotting, then increment the time 
  Ezp = Ez;                                  % transfer the new Ex values to the matrix for the past values 
end 

%**************************  PLOT Ez VERSUS TIME  ********************************************************** 

figure('Position',[-10 -110 1700 1100])                                      % gimme a big window 
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on;                         % dual y-axis plot 
set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2]);                % left-hand y-axis settings 
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2]);                            % right-hand y-axis settings 
set(H1,'LineWidth',2);                                                       % set the line width 
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0])      % title 
xlabel('Time {\itt}  [seconds]','FontSize',16, 'Color',[0 0 0])              % x-axis label 
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt})  [V/m]','FontSize',16, 'Color',[0 0 0])) 
 
 



Used matrix calculations, but with D=0.2 

 
 

Old one done with individual, looped calculations with D=0.5 

 



MATLAB CODE (looped version) 
 
 
function FDTD() 
%   Finite Difference Time Domain, EE325K HW 10, by Tom Penick 
%   This function plots Ez at (15m, 10m) from 0<t<200 ns in response 
%   to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T. 
%   Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m) 
%   This function takes a loooooooooooooooong time to run! 
 
 
%*******************  VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS  ************************************* 
 
T = 10e-9; t = 0; TT = 200e-9;           % ramp time 10 ns, start time 0 s, plot duration 200 ns 
Jz = 0; JzLoc = [5 10];                  % initial current and location 
sRange = [0 20]; sDomain = [0 20];       % solution domain, y=sRange x=sDomain 
D = .5;                                  % spatial discretization, delta 
dt = .2e-9                               % time discretization, delta t = 0.2 ns 
EzObs = []; Time = []; JzPlt = [];       % matrices, observed Ez and time for plotting 
EzLoc = [15 10];                         % location of the observation point 
uo = 1.25663706144e-6;                   % permiability of free space 
eo = 8.85418781762e-12;                  % permittivity of free space 
c = 299.792458e6;                        % speed of light 
Ez = zeros([(sDomain(2)-sDomain(1))/D+1,(sRange(2)-sRange(1))/D+1]); 
Hx=Ez; Hy=Ez;                            % create matrices for future grid values, n+½, n+1 
Ezp=Ez; Hxp=Ez; Hyp=Ez;                  % create matrices for past and present grid values, n-½, n 
iNdx = 2;                                % matrix index for i and i-½ 
jNdx = 2;                                % matrix index for j and j-½ 
Courant = D/2^.5/c                       % Courant stability condition, must be > dt 
                                         % Do some precalculations to speed this dog up. 
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later 
 
 
%*****************************  THE EXPRESSIONS TO CALCULATE  *********************************************** 
 
ExprHx = 'Hx(iNdx,jNdx+1)=Hxp(iNdx,jNdx+1)-M1*(Ezp(iNdx,jNdx+1)-Ezp(iNdx,jNdx));'; 
ExprHy = 'Hy(iNdx+1,jNdx)=Hyp(iNdx+1,jNdx)+M1*(Ezp(iNdx+1,jNdx)-Ezp(iNdx,jNdx));'; 
ExprEz = 'Ez(iNdx,jNdx)=Ezp(iNdx,jNdx)+M2*(Hy(iNdx+1,jNdx)-Hy(iNdx,jNdx)-Hx(iNdx,jNdx+1)+Hx(iNdx,jNdx))-Jz;'; 
MURlft = 'Ez(iNdx,jNdx)=Ezp(iNdx+1,jNdx)+M4*(Ez(iNdx+1,jNdx)-Ezp(iNdx,jNdx));'; 
MURrgt = 'Ez(iNdx,jNdx)=Ezp(iNdx-1,jNdx)+M4*(Ez(iNdx-1,jNdx)-Ezp(iNdx,jNdx));'; 
MURtop = 'Ez(iNdx,jNdx)=Ezp(iNdx,jNdx-1)+M4*(Ez(iNdx,jNdx-1)-Ezp(iNdx,jNdx));'; 
 
 
%**********************************  THE PROGRAM CODE  ****************************************************** 
 
JzLoc = JzLoc/D+1;      % convert the location of the source from meters to values for matrix indices 
EzLoc = EzLoc/D+1;      % convert the location of observation point from meters to values for matrix indices 
while t<=TT 
  while iNdx < size(Ez,1)                % iNdx is associated with x values and matrix rows 
    while jNdx < size(Ez,2)              % jNdx is associated with y values and matrix columns 
      eval(ExprHx); eval(ExprHy);        % evaluate the expressions for magnetic field 
      if JzLoc == [iNdx jNdx]            % look for the source point 
        if t <= T                        % select the proper value for Jz 
          Jz = (1-cos(pi*t/T));          % the current, Jz 
        else 
          Jz = 2;                        % the current, Jz 
        end 
        JzPlt = [JzPlt Jz]; Jz = Jz*M3;  % save Jz for plotting and apply the multiplier dt/eo 
      else 
        Jz = 0;                          % we are not at the source 
      end 
      eval(ExprEz); jNdx = jNdx+1;       % evaluate the electric field and increment the j index 
    end 
    jNdx = 2; iNdx = iNdx+1;             % reset the j index, increment the i index   
  end 



                                         % Now do the MUR1 stuff 
  iNdx = 1; jNdx = 2;                    % reset the indices to prepare for the left side 
  while jNdx < size(Ez,2)                % do the left side from one above the bottom to one below the top 
    eval(MURlft); jNdx = jNdx+1;         % get Ez and increment j index 
  end 
  jNdx = 2; iNdx = size(Ez,1);           % reset the indices to prepare for the right side 
  while jNdx < size(Ez,2)                % do the right side from one above the bottom to one below the top 
    eval(MURrgt); jNdx = jNdx+1;         % get Ez and increment j index 
  end 
  iNdx = 1; jNdx = size(Ez,2);           % reset the indices to prepare for the top side 
  while iNdx <= size(Ez,1)               % get Ez all the way across the top boundary 
    eval(MURtop); iNdx = iNdx+1;         % get Ez and increment i index 
  end 
  EzObs = [EzObs Ez(EzLoc(1),EzLoc(2))]; % save the electric field at the observation point for plotting 
  Time = [Time t];                       % save the time value for plotting 
  Ezp = Ez; Hxp = Hx; Hyp = Hy;          % transfer the new values to the matrices for the past values 
  t = t+dt; iNdx = 2; jNdx = 2;          % increment the time, reset the indices 
end 
 
 
%**************************  PLOT Ez VERSUS TIME  ********************************************************** 
 
figure('Position',[-10 -110 1700 1100])  % gimme a big window 
plot(Time,EzObs,'LineWidth',2); grid on; % create plot, set linewidth 
hold on, plot(Time,JzPlt,':'), hold off 
ylimits = [-9 2.5];                      % set the Y axis limits 
set(gca,'Ylim',ylimits);                 % apply the specified range 
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0]) 
xlabel('Time {\itt}  [seconds]','FontSize',16, 'Color',[0 0 0]) 
ylabel('{\itE{_z}}({\itt})  [V/m]','FontSize',16, 'Color',[0 0 0]) 
 
 


