
Tom Penick
EE 325K Homework 10, November 30, 2000

Problem:

Write a 2D FDTD (finite difference time
domain) computer code to simulate wave
propagation due to a line current Jz at
(5m,10m). Plot Ez at (15m, 10m) from 0 to
200 ns.

Source: ()
0, 0

1 cos , 0

2,

z

t
t

J t t T
T

t T

<
 π = − ≤ ≤  

 
>

T = 10 ns, ∆ = 0.1 m, ∆t = 0.2 ns

20

meters

meters
0

5

10

5

20

15

y

1510

Perfect conductor

Absorbing boundary

Observation point

zSource J

x

Diagram from the problem statement showing the area of
calculation.

meters
0

Hx(1,1)

Ez(1,1)

Hy(1,1)

Ez(HiX+1,HiY+1)

Hx(HiX+1,HiY)

Hy(HiX,HiY+1)

.3.2.1

.2

.3

19.9

19.8

19.7

20

Detail showing the upper right and lower left corners of the Yee grid. This shows
how matrix elements written in Matlab code correspond to Hx, Hy, and Ez of the
Yee grid. Matlab rows are the x-values (i-values) and Matlab columns are the y-
values (j-values).

Legend

Ez

Hx

Hy

Hx is calculated based on
the past value of Hx and the
values of Ez above and
below

Hy is calculated
based on the past
value of Hy and the
values of Ez to the
left and right

Ez is calculated based on the past
value of Ez and the values of Hx
above and below, and the values of
Hy to the left and right.

Detail showing how the Matlab calculations propagate through the Yee grid.

The project was done using Matlab. Two
201×201 matrices are created for present and
future values of Ez, one 200×200 matrix is
created for Jz, one 201×200 matrix for Hx, and
one 200×200 matrix for Hy. These values are
easily scaled for other problems by changing
parameters in the first section of the code.
Execution time using a Celeron 450 MHz
processor is 93 seconds.

The wave calculations propagate by one grid
point (δ = 0.1m) horizontally and vertically each
time step (∆t = 0.2 ns). So propagation to a
diagonal grid point takes two time steps
(2∆t = 0.4 ns). The propagation of calculations
(not the wave itself) along the direct path from

source to observation point takes ∆t×10m/δ = 20
ns. The reflected path from the perfect
conductor takes a minimum of ∆t×30m/δ = 60 ns
for the calculation and 22m/c = 73.4 ns for the
wave propagation. Should there be a reflection
from the nearest "absorbing" boundary, that
would take ∆t×20m/δ = 40 ns for the calculations
to propagate, and 20m/c = 66.7 ns for the wave
to propagate at the speed of light. I am using the
MUR1 method for dealing with boundaries, so
some error is possible.

At the speed of light, the wave should propagate
from source to observation point in 33.4 ns.
Since the propagation of calculations for this
path is 20 ns, it should be possible to produce a

The problem result. The electric field Ez at the observation point is shown with a bold line
using the scale at left, and the input current Jz is shown with a thin line at the bottom of the
plot using the scale at right.

realistic result using ∆t = 0.2 ns and δ = 0.1 m.
The plot confirms this, showing a 32 ns interval
from t = 0 until the disturbance is seen at the
observation point. At this point, the observed
electric field swings negative in response to the
increasing current Jz. The duration of this
negative swing is about 10 ns,
same as the ramp time for Jz.
With Jz a constant 2 amps, the
response is an exponential
decay of the electric field at the
observation point.

At t = 74 ns the electric field
moves sharply positive. This
is the amount of time required
for a reflection from the perfect
conductor to reach the
observation point
(22m/c = 73.4 ns). The
duration of this positive swing
is about 10 ns, corresponding
to the ramp time for Jz.
Following this positive swing,
another exponential decay is
observed terminating in a
sharply negative swing at 94
ns. The negative direction and
the remaining strength of the response suggests a
2-reflection wave that uses the perfect conductor
for at least one reflection. It is found that a wave
reflecting first from the perfect conductor and
then from the right-hand "absorbing" boundary

would have a path length of 28.3 meters yielding
a propagation time of 28.3m/c = 94.3 ns. This
appears to be the cause of the second steep,
almost linear downward excursion and points out
a problem with the MUR1 method of handling
the absorbing boundary.

Following this excursion, the Ez component
begins to return exponentially (more or less) to
zero with some minor ripples evidently due to
other reflections.

20

meters

Reflection path
28.28 meters,
requiring 94.3 ns.

meters
0

5

10

5

20

15

y

1510

Perfect conductor

Absorbing boundary

Observation point

zSource J

x

Detail showing possible path of second significant reflection.

The 2D FDTD Equations

where i is a value on the horizontal axis, j is a value on the vertical axis, and n is a time value.

() () () ()1 1
2 21 1

2 2
0

, , , 1 ,n n n n
x x z z

t
H i j H i j E i j E i j+ − ∆  + = + − + − δµ

() () () ()1 1
2 21 1

2 2
0

, , 1, ,n n n n
y x z z

t
H i j H i j E i j E i j+ − ∆  + = + + + − δµ

() () () () () () ()1 1 1 1 1
2 2 2 2 21 1 1 1 1

2 2 2 2
0 0

, , , , , , ,n n n n nn n
z z y y x x z

t t
E i j E i j H i j H i j H i j H i j J i j+ + + + ++ ∆ ∆ = + + − − − + + − − δε ε

The Courant Stability Condition:
1

2
t

c
δ  ∆ ≤  

 

MUR1 Absorbing Boundary Conditions

where N is the boundary element (opposite 0)

Left Boundary: () () () ()1 10, 1, 1, 0,n n n n
z z z z

c t
E j E j E j E j

c t
+ +∆ − δ  = + − ∆ + δ

Right Boundary: () () () ()1 1, 1, 1, ,n n n n
z z z z

c t
E N j E N j E N j E N j

c t
+ +∆ − δ  = − + − − ∆ + δ

Top Boundary: () () () ()1 1, , 1 , 1 ,n n n n
z z z z

c t
E i N E i N E i N E i N

c t
+ +∆ − δ  = − + − − ∆ + δ

MUR2 Absorbing Boundary Conditions

Left Boundary: () () () ()1 10, 1, 1, 0,n n n n
z z z z

c t
E j E j E j E j

c t
+ +∆ − δ  = + − ∆ + δ

() () () () ()1 1 1 1

2 2 2 20 1 1 1 1
2 2 2 20, 0, 1, 1,

2
n n n n
x x x x

c
H j H j H j H j

c t
+ + + +µ  − + − − + + − − ∆ + δ

(Right boundary and top boundary are similarly modified.)

MATLAB CODE

function FDT2()

% Finite Difference Time Domain, EE325K HW 10, by Tom Penick
% This function plots Ez at (15m, 10m) from 0<t<200 ns in response
% to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T.
% Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m)

% INDEXING CONVENTIONS: Since the problem calls for indices with some integer+1/2 values and Matlab uses
% only whole number indexing, I need a plan. For the first three expressions, the matrices calculated
% are the interior matrices which do not include the boundary rows and columns.
% (Those rows and columns are present, I just exclude them when calculating.) The other matrices in the
% calculations are shifted as required with respect to these defining matrices. Matrix row indices
% correspond to graphical X positions and matrix column indices correspond to graphical Y positions,
% e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the
% graphical representation (except for the Hx matrix where it's Y=1/2).

%******************* VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS *************************************

T = 10e-9; t = 0; TT = 200e-9; % ramp time 10 ns, start time 0 s, plot duration 200 ns
JzLoc = [5 10]; % initial source current location
sRange = [0 20]; sDomain = [0 20]; % solution domain, y=sRange x=sDomain
D = .1; % spatial discretization, delta
dt = .2e-9 % time discretization, delta t = 0.2 ns
EzObs = []; Time = []; JzPlt = []; % matrices, observed Ez and time for plotting
EzLoc = [15 10]; % location of the observation point
uo = 1.25663706144e-6; % permiability of free space
eo = 8.85418781762e-12; % permittivity of free space
c = 299.792458e6; % speed of light
HiX = (sDomain(2)-sDomain(1))/D; % one less than the number of X-values (rows)
HiY = (sRange(2)-sRange(1))/D; % one less than the number of Y-values (columns)
Jz = zeros([HiX-1,HiY-1]); % create current source matrix that doesn't include boundaries
Ez = zeros([HiX+1,HiY+1]); % create electric field matrix that includes boundaries
Hx = zeros([HiX+1,HiY]); % create magnetic field matrix that includes left & right boundaries
Hy = zeros([HiX,HiY+1]); % create magnetic field matrix that includes upper & lower boundaries
Ezp=Ez; % create matrices for present grid values, Ez-n
Courant = D/2^.5/c % Courant stability condition, must be > dt
 % Do some precalculations to speed this dog up.
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later

%***************************** THE EXPRESSIONS TO CALCULATE ***

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));';
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));';
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-

1))-M3.*Jz;';
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));';
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));';
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));';

%********************************** THE PROGRAM CODE **

while t<=TT
 if t <= T % select the proper value for Jz
 Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but
 JzPlt = [JzPlt 1-cos(pi*t/T)]; % since it is the 0th row and column that are dropped, no
 else % correction is needed to index the source current location.
 Jz(JzLoc(1)/D,JzLoc(2)/D)=2; % the source current, Jz, after t = T
 JzPlt = [JzPlt 2]; % the source current, Jz, saved for plotting
 end
 eval(ExprHx); eval(ExprHy); eval(ExprEz); % evaluate the first three expressions
 eval(MURlft); eval(MURrgt); eval(MURtop); % evaluate the MUR1 calculations for the perimeter
 EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting
 Time = [Time t]; t = t+dt; % save the time value for plotting, then increment the time
 Ezp = Ez; % transfer the new values to the matrices for the past values
end

%************************** PLOT Ez AND Jz VERSUS TIME **

figure('Position',[-10 -110 1700 1100]) % gimme a big window
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on; % dual y-axis plot
set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2]); % left-hand y-axis settings
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2]); % right-hand y-axis settings
set(H1,'LineWidth',2); % set the line width
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0]) % title
xlabel('Time {\itt} [seconds]','FontSize',16, 'Color',[0 0 0]) % x-axis label
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt}) [V/m]','FontSize',16, 'Color',[0 0 0]))

Optional Part
Tom Penick, EE 325K Homework 10

Problem:

Study the propagation loss due to a structure
blocking direct transmission to the
observation point.

Line current Jz at (2m,10m). Plot Ez at
(18m, 10m) from 0 to 200 ns.

Source: () 1 cosz

t
J t

T
π = −  

 

T = 10 ns, ∆ = 0.1 m, ∆t = 0.2 ns

Perfect conductor

Source

5 10 15 200
x

Jx

5

10

15

20

y

Absorbing boundary

Observation point

Building (perfect conductor)

Diagram of the calculation area showing the
obstructing building at its 12 meter height.

Propagation Loss Due to a Structure

For this experiment I have moved the source and
observation points further apart to (2m,10m) and
18m,10m) respectively. The source current Jz is
now a sinusoidal wave and the observation time
period has been increased to 300 ns to allow the
sinusoidal response to stabilize. A "building" has
been erected between the source and observation
point. The building is modeled as a perfect
conductor. Its height is varied for the four plots to
observe the result of the signal blockage.

The 2 App source current is plotted in the lower
portion of the graph and the response Ez is plotted
in the upper portion. The scale of the first plot of
Ez has been changed to accommodate the much
higher amplitude of the unobstructed response.

In the first plot shown on the preceding page, the
building is only 8 meters high so that it does not
obstruct the line of sight path between source and
observation point. The observed electric field is
0.26 Vpp/m. When the building height is
increased to 12 meters, 2 meters higher than the
line of sight path, the observed voltage drops to
0.06 Vpp/m. The third and fourth plots are for
building heights of 14 and 16 meters respectively.
Steady state voltage response at the observation
point is 0.03 Vpp/m and 0.02 Vpp/m for the two
cases.

3D Observation of the Wave Encountering
the Building

To observe the effects of the wave encountering
the building, I returned the source Jz to its original
pulse configuration and plotted 3D graphs of the
pulse-induced wave encountering the side of the
building. On the following page is a series of 15
time lapse views of the absolute value of the
electric field from t = 12.5 ns to 47.5 ns. This

appears as a mirror image of my original problem
statement diagram, with the source now located
on the right side of the building and the ground in
the left foreground. It can be seen that the MUR1
absorbing boundary condition allows the electric
field to flow across the boundary in the right
foreground while the field remains anchored to
zero at ground. A steep gradient appears next to
the building and ground and a strong peak is
observed at the upper corner of the building.

MUR2 Attempt

I revised the Matlab code for the original problem
statement to employ the MUR2 method of
handling absorbing boundary conditions as
described by G. Mur in IEEE Trans.
Electromagnetic Compatibility, vol. 23, pp. 377-
382, Nov. 1981. This revision extended the
execution time of the program from 93 seconds to
100 seconds. Unfortunately the result produced
instability at t = 80 ns. I have tried experimenting
with different values of ∆t and δ, with no success.

Implementation of MUR2, showing instability.

This is a 3D time lapse series of the absolute value of the electric field Ez in response to a 2-Amp
10 ns impulse Jz, showing the effect of the wave encountering the 16-meter building.

t = 12.5 ns

t = 15.0 ns

t = 17.5 ns

t = 20.0 ns

t = 22.5 ns

t = 25.0 ns

t = 27.5 ns

t = 30.0 ns

t = 32.5 ns

t = 35.0 ns

t = 37.5 ns

t = 40.0 ns

t = 42.5 ns

t = 45.0 ns

t = 47.5 ns

MATLAB CODE (Optional part – loss due to a building)

function FDT3()

% Finite Difference Time Domain, EE325K HW 10, Optional part, by Tom Penick
% This function plots Ez at (18m, 10m) from 0<t<300 ns in response
% to signal Jz(t) = 1-cos(pi*t/T). Jz(t) is located at (2m, 10m). A building
% (perfect conductor) blocks the direct path between current source and
% observation point. The solution domain is (0-20m, 0-20m).

% INDEXING CONVENTIONS: Since the problem calls for indices with some integer+1/2 values and Matlab uses
% only whole number indexing, I need a plan. For the first three expressions, the matrices calculated
% are the interior matrices which do not include the boundary rows and columns.
% (Those rows and columns are present, I just exclude them when calculating.) The other matrices in the
% calculations are shifted as required with respect to these defining matrices. Matrix row indices
% correspond to graphical X positions and matrix column indices correspond to graphical Y positions,
% e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the
% graphical representation (except for the Hx matrix where it's Y=1/2).
% HANDLING THE BUILDING: I will allow field points to be calculated as before in function FDT2(). But
% after each iteration dt, I will reset the E-field values on and within the perimeter of the building
% lines to zero. This will keep the H-field within the building at zero.

%******************* VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS *************************************

T = 10e-9; t = 0; TT = 300e-9; % ramp time 10 ns, start time 0 s, plot duration 200 ns
JzLoc = [2 10]; EzLoc = [18 10]; % source current and observation point locations
Bldg = [8 12 16]; % location parameters of the building [left right height]
sRange = [0 20]; sDomain = [0 20]; % solution domain, y=sRange x=sDomain
D = .1; % spatial discretization, delta
dt = .2e-9 % time discretization, delta t = 0.2 ns
EzObs = []; Time = []; JzPlt = []; % matrices, observed Ez and time for plotting
uo = 1.25663706144e-6; % permiability of free space
eo = 8.85418781762e-12; % permittivity of free space
c = 299.792458e6; % speed of light
HiX = (sDomain(2)-sDomain(1))/D; % one less than the number of X-values (rows)
HiY = (sRange(2)-sRange(1))/D; % one less than the number of Y-values (columns)
Jz = zeros([HiX-1,HiY-1]); % create current source matrix that doesn't include boundaries
Ez = zeros([HiX+1,HiY+1]); % create electric field matrix that includes boundaries
Hx = zeros([HiX+1,HiY]); % create magnetic field matrix that includes left & right boundaries
Hy = zeros([HiX,HiY+1]); % create magnetic field matrix that includes upper & lower boundaries
Ezp=Ez; % create matrix for present grid values, Ex-n
Courant = D/2^.5/c % Courant stability condition, must be > dt
 % Do some precalculations to speed this dog up.
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later

%***************************** THE EXPRESSIONS TO CALCULATE ***

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));';
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));';
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3.*Jz;';
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));';
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));';
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));';

%********************************** THE PROGRAM CODE **

while t<=TT
 Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but
 JzPlt = [JzPlt 1-cos(pi*t/T)]; % since it is the 0th row and column that are dropped, no
 % correction is needed to index the source current location.
 eval(ExprHx); eval(ExprHy); eval(ExprEz); % evaluate the first three expressions
 eval(MURlft); eval(MURrgt); eval(MURtop); % evaluate the MUR1 calculations for the perimeter
 EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting
 Time = [Time t]; t = t+dt; % save the time value for plotting, then increment the time
 Ezp = Ez; % transfer the new values of Ex to the matrix for the past values
 % return the building E-field to zero
 Ezp(Bldg(1)/D+1:Bldg(2)/D+1,1:Bldg(3)/D+1) = zeros((Bldg(2)-Bldg(1))/D+1,(Bldg(3))/D+1);
end

%************************** PLOT Ez VERSUS TIME **

figure('Position',[-10 -110 1700 1100]) % gimme a big window
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on; % dual y-axis plot
%set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2],'FontSize',14); % left-hand y-axis settings
set(Ax(1),'Ylim',[-.1 .05],'Ytick',[-.1 -.075 -.05 -.025 0 .025 .05],'FontSize',14); % left-hand y-axis
settings
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2],'FontSize',14); % right-hand y-axis settings
set(H1,'LineWidth',2); % set the line width
title('{\itE{_z}}(18,10), Building Height 16m', 'FontSize',18, 'Color',[0 0 0]) % title
xlabel('Time {\itt} [seconds]','FontSize',16, 'Color',[0 0 0]) % x-axis label
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt}) [V/m]','FontSize',16, 'Color',[0 0 0]))

MATLAB CODE (Optional part – 3D Graphics)

function FDT4()
% Finite Difference Time Domain, EE325K HW 10, Optional part, by Tom Penick
% 3D experiment
% This function plots Ez at (18m, 10m) from 0<t<300 ns in response
% to signal Jz(t) = 1-cos(pi*t/T). Jz(t) is located at (2m, 10m). A building
% (perfect conductor) blocks the direct path between current source and
% observation point. The solution domain is (0-20m, 0-20m).

% INDEXING CONVENTIONS: Since the problem calls for indices with some integer+1/2 values and Matlab uses
% only whole number indexing, we need a plan. For the first three expressions, the matrices calculated
% are the interior matrices which do not include the boundary rows and columns.
% (Those rows and columns are present, we just exclude them when calculating.) The other matrices in the
% calculations are shifted as required with respect to these defining matrices. Matrix row indices
% correspond to graphical X positions and matrix column indices correspond to graphical Y positions,
% e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the
% graphical representation (except for the Hx matrix where it's Y=1/2).
% HANDLING THE BUILDING: I will allow field points to be calculated as in the problem without the
% building present as in function FDT2(). But after each iteration dt, I will reset the E-field values
% on and within the perimeter of the building lines to zero. This will keep the H-field within the
% building at zero.

%******************* VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS *************************************

T = 10e-9; t = 0; TT = 50e-9; % ramp time 10 ns, start time 0 s, plot duration 200 ns
JzLoc = [2 10]; EzLoc = [18 10]; % source current and observation point locations
Bldg = [8 12 16]; % location parameters of the building [left right height]
sRange = [0 20]; sDomain = [0 20]; % solution domain, y=sRange x=sDomain
D = .1; % spatial discretization, delta
dt = .2e-9; % time discretization, delta t = 0.2 ns
EzObs = []; Time = []; JzPlt = []; % matrices, observed Ez and time for plotting
uo = 1.25663706144e-6; % permiability of free space
eo = 8.85418781762e-12; % permittivity of free space
c = 299.792458e6; % speed of light
HiX = (sDomain(2)-sDomain(1))/D; % one less than the number of X-values (rows)
HiY = (sRange(2)-sRange(1))/D; % one less than the number of Y-values (columns)
Jz = zeros([HiX-1,HiY-1]); % create current source matrix that doesn't include boundaries
Ez = zeros([HiX+1,HiY+1]); % create electric field matrix that includes boundaries
Hx = zeros([HiX+1,HiY]); % create magnetic field matrix that includes left & right boundaries
Hy = zeros([HiX,HiY+1]); % create magnetic field matrix that includes upper & lower boundaries
Ezp=Ez; % create matrix for present grid values, Ex-n
Courant = D/2^.5/c; % Courant stability condition, must be > dt
Repeat = 2.5e-9;
 % Do some precalculations to speed this dog up.
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later

%***************************** THE EXPRESSIONS TO CALCULATE ***

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));';
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));';
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3.*Jz;';
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY));';
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY));';
MURtop = 'Ez(1:HiX+1,HiY+1)=Ezp(1:HiX+1,HiY)+M4*(Ez(1:HiX+1,HiY)-Ezp(1:HiX+1,HiY+1));';

%********************************** THE PROGRAM CODE **

Cnt=4;
while t<=TT
 if t <= T % select the proper value for Jz
 Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but
 JzPlt = [JzPlt 1-cos(pi*t/T)]; % since it is the 0th row and column that are dropped, no
 % correction is needed to index the source current location.
 else
 Jz(JzLoc(1)/D,JzLoc(2)/D)=2; % the source current, Jz, after t = T
 JzPlt = [JzPlt 2]; % the source current, Jz, saved for plotting
 end
 eval(ExprHx); eval(ExprHy); eval(ExprEz); % evaluate the first three expressions
 eval(MURlft); eval(MURrgt); eval(MURtop); % evaluate the MUR1 calculations for the perimeter
 EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting
 if t >= Cnt*Repeat & t < Cnt*Repeat + dt % create a series of 3D plots
 figure('Position',[-10 -110 1000 800]) % gimme a big window
 [X,Y] = meshgrid(0:.1:20); % Create a grid
 surf(X,Y,abs(Ez))
 set(gca,'Zlim',[0 .5],'FontSize',14); % z-axis settings
 colormap hot
 shading interp
 Cnt = Cnt+1;
 end
 Time = [Time t]; t = t+dt; % save the time value for plotting, then increment the time
 Ezp = Ez; % transfer the new values of Ex to the matrix for past values
 % return the building E-field to zero
 Ezp(Bldg(1)/D+1:Bldg(2)/D+1,1:Bldg(3)/D+1) = zeros((Bldg(2)-Bldg(1))/D+1,(Bldg(3))/D+1);
end

%************************** PLOT Ez VERSUS TIME **

figure('Position',[-10 -110 1100 800]) % gimme a big window
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on; % dual y-axis plot
%set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2],'FontSize',14); % left-hand y-axis settings
set(Ax(1),'Ylim',[-.1 .05],'Ytick',[-.1 -.075 -.05 -.025 0 .025 .05],'FontSize',14); % left-hand y-axis settings
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2],'FontSize',14); % right-hand y-axis settings
set(H1,'LineWidth',2); % set the line width
title('{\itE{_z}}(18,10), Building Height 16m', 'FontSize',18, 'Color',[0 0 0]) % title
xlabel('Time {\itt} [seconds]','FontSize',16, 'Color',[0 0 0]) % x-axis label
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt}) [V/m]','FontSize',16, 'Color',[0 0 0]))

MATLAB CODE (Optional part – MUR2)

function FDT5()
% Finite Difference Time Domain, EE325K HW 10, MUR2 Optional Part, by Tom Penick
% This function plots Ez at (15m, 10m) from 0<t<200 ns in response
% to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T.
% Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m)
%
% INDEXING CONVENTIONS: Since the problem calls for indices with some integer+1/2 values and Matlab uses
% only whole number indexing, we need a plan. For the first three expressions, the matrices calculated
% are the interior matrices which do not include the boundary rows and columns.
% (Those rows and columns are present, we just exclude them when calculating.) The other matrices in the
% calculations are shifted as required with respect to these defining matrices. Matrix row indices
% correspond to graphical X positions and matrix column indices correspond to graphical Y positions,
% e.g. column 1 corresponds to Y=0 and holds the values for the perfect conductor at the bottom of the
% graphical representation (except for the Hx matrix where it's Y=1/2).

%******************* VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS *************************************

T = 10e-9; t = 0; TT = 200e-9; % ramp time 10 ns, start time 0 s, plot duration 200 ns
JzLoc = [5 10]; % initial source current location
sRange = [0 20]; sDomain = [0 20]; % solution domain, y=sRange x=sDomain
D = .1; % spatial discretization, delta
dt = .2e-9 % time discretization, delta t = 0.2 ns
EzObs = []; Time = []; JzPlt = []; % matrices, observed Ez and time for plotting
EzLoc = [15 10]; % location of the observation point
uo = 1.25663706144e-6; % permiability of free space
eo = 8.85418781762e-12; % permittivity of free space
c = 299.792458e6; % speed of light
HiX = (sDomain(2)-sDomain(1))/D; % one less than the number of X-values (rows)
HiY = (sRange(2)-sRange(1))/D; % one less than the number of Y-values (columns)
Jz = zeros([HiX-1,HiY-1]); % create current source matrix that doesn't include boundaries
Ez = zeros([HiX+1,HiY+1]); % create electric field matrix that includes boundaries
Hx = zeros([HiX+1,HiY]); % create magnetic field matrix that includes left & right boundaries
Hy = zeros([HiX,HiY+1]); % create magnetic field matrix that includes upper & lower boundaries
Ezp=Ez; % create matrix for present grid values, Ex-n
Courant = D/2^.5/c % Courant stability condition, must be > dt
 % Do some precalculations to speed this dog up.
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); M5=uo*c/(2*(c*dt+D));% some multipliers to be used later

%***************************** THE EXPRESSIONS TO CALCULATE ***

ExprHx = 'Hx(2:HiX,1:HiY)=Hx(2:HiX,1:HiY)-M1*(Ezp(2:HiX,2:HiY+1)-Ezp(2:HiX,1:HiY));';
ExprHy = 'Hy(1:HiX,2:HiY)=Hy(1:HiX,2:HiY)+M1*(Ezp(2:HiX+1,2:HiY)-Ezp(1:HiX,2:HiY));';
ExprEz = 'Ez(2:HiX,2:HiY)=Ezp(2:HiX,2:HiY)+M2*(Hy(2:HiX,2:HiY)-Hy(1:HiX-1,2:HiY)-Hx(2:HiX,2:HiY)+Hx(2:HiX,1:HiY-
1))-M3*Jz;';
MURlft = 'Ez(1,2:HiY)=Ezp(2,2:HiY)+M4*(Ez(2,2:HiY)-Ezp(1,2:HiY))-M5*(Hx(1,2:HiY)-Hx(1,1:HiY-1)+Hx(2,2:HiY)-
Hx(2,1:HiY-1));';
MURrgt = 'Ez(HiX+1,2:HiY)=Ezp(HiX,2:HiY)+M4*(Ez(HiX,2:HiY)-Ezp(HiX+1,2:HiY))-M5*(Hx(HiX+1,2:HiY)-Hx(HiX+1,1:HiY-
1)+Hx(HiX,2:HiY)-Hx(HiX,1:HiY-1));';
MURtop = 'Ez(2:HiX,HiY+1)=Ezp(2:HiX,HiY)+M4*(Ez(2:HiX,HiY)-Ezp(2:HiX,HiY+1))-M5*(Hy(2:HiX,HiY+1)-Hy(1:HiX-
1,HiY+1)+Hy(2:HiX,HiY)-Hy(1:HiX-1,HiY));';
Corners = 'Ez(1,HiY+1)=Ez(2,HiY); Ez(HiX+1,HiY+1)=Ez(HiX,HiY);'; % Copy the adjacent diagonals to the corners

%********************************** THE PROGRAM CODE **

while t<=TT
 if t <= T % select the proper value for Jz
 Jz(JzLoc(1)/D,JzLoc(2)/D)=1-cos(pi*t/T); % Jz (current) is 2x2 smaller than the other matrices, but
 JzPlt = [JzPlt 1-cos(pi*t/T)]; % since it is the 0th row and column that are dropped, no
 % correction is needed to index the source current location.
 else
 Jz(JzLoc(1)/D,JzLoc(2)/D)=2; % the source current, Jz, after t = T
 JzPlt = [JzPlt 2]; % the source current, Jz, saved for plotting
 end
 eval(ExprHx); eval(ExprHy); eval(ExprEz); % evaluate the first three expressions
 eval(MURlft); eval(MURrgt); eval(MURtop); eval(Corners); % evaluate the MUR2 calculations for the perimeter
 EzObs = [EzObs Ez(EzLoc(1)/D+1,EzLoc(2)/D+1)]; % electric field at the observation point for plotting
 Time = [Time t]; t = t+dt; % save the time value for plotting, then increment the time
 Ezp = Ez; % transfer the new Ex values to the matrix for the past values
end

%************************** PLOT Ez VERSUS TIME **

figure('Position',[-10 -110 1700 1100]) % gimme a big window
[Ax,H1,H2] = plotyy(Time,EzObs,Time,JzPlt); grid on; % dual y-axis plot
set(Ax(1),'Ylim',[-.4 .2],'Ytick',[-.4 -.3 -.2 -.1 0 .1 .2]); % left-hand y-axis settings
set(Ax(2),'Ylim',[-1 11],'Ytick',[0 .5 1 1.5 2]); % right-hand y-axis settings
set(H1,'LineWidth',2); % set the line width
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0]) % title
xlabel('Time {\itt} [seconds]','FontSize',16, 'Color',[0 0 0]) % x-axis label
set(Ax(1),'Ylabel',text('String','{\itE{_z}}({\itt}) [V/m]','FontSize',16, 'Color',[0 0 0]))

Used matrix calculations, but with D=0.2

Old one done with individual, looped calculations with D=0.5

MATLAB CODE (looped version)

function FDTD()
% Finite Difference Time Domain, EE325K HW 10, by Tom Penick
% This function plots Ez at (15m, 10m) from 0<t<200 ns in response
% to signal Jz(t) = 0, t<0; = 1-cos(pi*t/T), 0<t<T; = 2, t>T.
% Jz(t) is located at (5m, 10m). The solution domain is (0-20m, 0-20m)
% This function takes a loooooooooooooooong time to run!

%******************* VARIABLES, PARAMETERS, AND INITIAL CALCULATIONS *************************************

T = 10e-9; t = 0; TT = 200e-9; % ramp time 10 ns, start time 0 s, plot duration 200 ns
Jz = 0; JzLoc = [5 10]; % initial current and location
sRange = [0 20]; sDomain = [0 20]; % solution domain, y=sRange x=sDomain
D = .5; % spatial discretization, delta
dt = .2e-9 % time discretization, delta t = 0.2 ns
EzObs = []; Time = []; JzPlt = []; % matrices, observed Ez and time for plotting
EzLoc = [15 10]; % location of the observation point
uo = 1.25663706144e-6; % permiability of free space
eo = 8.85418781762e-12; % permittivity of free space
c = 299.792458e6; % speed of light
Ez = zeros([(sDomain(2)-sDomain(1))/D+1,(sRange(2)-sRange(1))/D+1]);
Hx=Ez; Hy=Ez; % create matrices for future grid values, n+½, n+1
Ezp=Ez; Hxp=Ez; Hyp=Ez; % create matrices for past and present grid values, n-½, n
iNdx = 2; % matrix index for i and i-½
jNdx = 2; % matrix index for j and j-½
Courant = D/2^.5/c % Courant stability condition, must be > dt
 % Do some precalculations to speed this dog up.
M1=dt/D/uo; M2=dt/D/eo; M3=dt/eo; M4=(c*dt-D)/(c*dt+D); % some multipliers to be used later

%***************************** THE EXPRESSIONS TO CALCULATE ***

ExprHx = 'Hx(iNdx,jNdx+1)=Hxp(iNdx,jNdx+1)-M1*(Ezp(iNdx,jNdx+1)-Ezp(iNdx,jNdx));';
ExprHy = 'Hy(iNdx+1,jNdx)=Hyp(iNdx+1,jNdx)+M1*(Ezp(iNdx+1,jNdx)-Ezp(iNdx,jNdx));';
ExprEz = 'Ez(iNdx,jNdx)=Ezp(iNdx,jNdx)+M2*(Hy(iNdx+1,jNdx)-Hy(iNdx,jNdx)-Hx(iNdx,jNdx+1)+Hx(iNdx,jNdx))-Jz;';
MURlft = 'Ez(iNdx,jNdx)=Ezp(iNdx+1,jNdx)+M4*(Ez(iNdx+1,jNdx)-Ezp(iNdx,jNdx));';
MURrgt = 'Ez(iNdx,jNdx)=Ezp(iNdx-1,jNdx)+M4*(Ez(iNdx-1,jNdx)-Ezp(iNdx,jNdx));';
MURtop = 'Ez(iNdx,jNdx)=Ezp(iNdx,jNdx-1)+M4*(Ez(iNdx,jNdx-1)-Ezp(iNdx,jNdx));';

%********************************** THE PROGRAM CODE **

JzLoc = JzLoc/D+1; % convert the location of the source from meters to values for matrix indices
EzLoc = EzLoc/D+1; % convert the location of observation point from meters to values for matrix indices
while t<=TT
 while iNdx < size(Ez,1) % iNdx is associated with x values and matrix rows
 while jNdx < size(Ez,2) % jNdx is associated with y values and matrix columns
 eval(ExprHx); eval(ExprHy); % evaluate the expressions for magnetic field
 if JzLoc == [iNdx jNdx] % look for the source point
 if t <= T % select the proper value for Jz
 Jz = (1-cos(pi*t/T)); % the current, Jz
 else
 Jz = 2; % the current, Jz
 end
 JzPlt = [JzPlt Jz]; Jz = Jz*M3; % save Jz for plotting and apply the multiplier dt/eo
 else
 Jz = 0; % we are not at the source
 end
 eval(ExprEz); jNdx = jNdx+1; % evaluate the electric field and increment the j index
 end
 jNdx = 2; iNdx = iNdx+1; % reset the j index, increment the i index
 end

 % Now do the MUR1 stuff
 iNdx = 1; jNdx = 2; % reset the indices to prepare for the left side
 while jNdx < size(Ez,2) % do the left side from one above the bottom to one below the top
 eval(MURlft); jNdx = jNdx+1; % get Ez and increment j index
 end
 jNdx = 2; iNdx = size(Ez,1); % reset the indices to prepare for the right side
 while jNdx < size(Ez,2) % do the right side from one above the bottom to one below the top
 eval(MURrgt); jNdx = jNdx+1; % get Ez and increment j index
 end
 iNdx = 1; jNdx = size(Ez,2); % reset the indices to prepare for the top side
 while iNdx <= size(Ez,1) % get Ez all the way across the top boundary
 eval(MURtop); iNdx = iNdx+1; % get Ez and increment i index
 end
 EzObs = [EzObs Ez(EzLoc(1),EzLoc(2))]; % save the electric field at the observation point for plotting
 Time = [Time t]; % save the time value for plotting
 Ezp = Ez; Hxp = Hx; Hyp = Hy; % transfer the new values to the matrices for the past values
 t = t+dt; iNdx = 2; jNdx = 2; % increment the time, reset the indices
end

%************************** PLOT Ez VERSUS TIME **

figure('Position',[-10 -110 1700 1100]) % gimme a big window
plot(Time,EzObs,'LineWidth',2); grid on; % create plot, set linewidth
hold on, plot(Time,JzPlt,':'), hold off
ylimits = [-9 2.5]; % set the Y axis limits
set(gca,'Ylim',ylimits); % apply the specified range
title('{\itE{_z}}(15,10) for 0-200 ns', 'FontSize',18, 'Color',[0 0 0])
xlabel('Time {\itt} [seconds]','FontSize',16, 'Color',[0 0 0])
ylabel('{\itE{_z}}({\itt}) [V/m]','FontSize',16, 'Color',[0 0 0])

