DIPOLE

Far from the source, the wave looks spherical:

$$
p(r, \theta)=\mathrm{j} 2 \underbrace{\frac{A}{r} e^{\mathrm{j}(\omega t-k r)}}_{\text {spherical wave }} \underbrace{\sin \left(\frac{1}{2} k d \sin \theta\right)}_{\text {directivity function }}
$$

where:

$p=\mathscr{P}-\mathscr{P}_{0}$ acoustic pressure [Pa]
$r=$ radial distance from the center of the source [m]
$\omega=$ frequency [rad/s]
$k=$ wave number or propagation constant [rad./m]
$\rho_{0}=$ equilibrium (ambient) density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$c=\frac{d x}{d t}$ is the phase speed (speed of sound) [m / s]
$u=$ particle velocity (due to vibration, not flow) [m / s]

