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TRANSMISSION LINES

TELEGRAPHER'S EQUATIONS 

(1)  V IL
z t

∂ ∂
= −

∂ ∂
 (2)  I VC

z t
∂ ∂

= −
∂ ∂

 

By taking the partial derivative with respect to z of equation 
1 and partial with respect to t of equation 2, we can get: 

(i)  
2 2

2 2

V VLC
z t

∂ ∂
=

∂ ∂
 (ii)  

2 2

2 2

I ILC
z t

∂ ∂
=

∂ ∂
 

 
SOLVING THE EQUATIONS 

To solve the equations (i) and (ii) above, we guess that 
( ) ( )F u F z vt= ±  is a solution to the equations.  It is found 

that the unknown constant v is the wave propagation 
velocity. 

( ) ( )totalV V z vt V v vt+ −= − + +    where: 
z is the position along the transmission line, where the load 

is at z=0 and the source is at z=-l, with l the length of the 
line. 

v is the velocity of propagation 1/ LC  or /ω β , the speed 
at which the waveform moves down the line; see p 2 

t is time 
 

THE COMPLEX WAVE EQUATION 
The general solutions of equations (i) and (ii) above 
yield the complex wave equations for voltage and 
current.  These are applicable when the excitation is 
sinusoidal and the circuit is under steady state 
conditions. 

zjzj eVeVzV β+−β−+ +=)(  
zjzj eIeIzI β+−β−+ +=)(  

0

)(
Z

eVeVzI
zjzj β+−β−+ +

=   where: 

zje β−   and  zje β+   represent wave propagation in the +z 
and –z directions respectively,  

/LC vβ = ω = ω   is the phase constant, 

0 /Z L C=   is the characteristic impedance of the line.  
These equations represent the voltage and current 
phasors. 

 

+/-   WATCHING SIGNS 
By convention z is the variable used to describe 
position along a transmission line with the origin z=0 
set at the load so that all other points along the line 
are described by negative position values. 

-+
SR

VS
l

RL=0zz=-l

 

Ohm's law for right- and left-traveling disturbances: 

0V I Z+ +=   0V I Z− −= −  

 
vp   VELOCITY OF PROPAGATION   [cm/s] 

The velocity of propagation is the speed at which a 
wave moves down a transmission line.  The velocity 
approaches the speed of light but may not exceed the 
speed of light since this is the maximum speed at 
which information can be transmitted.  But vp may 
exceed the speed of light mathematically in some 
calculations. 

1 1
pv

LC
ω

= = =
βεµ

   where: 

L = inductance per unit length [H/cm] 
C = capacitance per unit length [F/cm] 
ε = permittivity of the material [F/cm] 
µ = permeability of the material [H/cm] 
ω = frequency [radians/second] 
β = phase constant 

Phase Velocity  The velocity of propagation of a TEM 
wave may also be referred to as the phase velocity.  
The phase velocity of a TEM wave in conducting 
material may be described by: 

0 eff

2 1
p

r

v c c
k
ω πδ

= ωδ = = =
λ ε

    where: 

δ = skin depth [m] 
c = speed of light 2.998 × 108 m/s 
λ0 = wavelength in the material [m] 
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Z0   CHARACTERISTIC IMPEDANCE   [Ω] 
The characteristic impedance is the resistance 
initially seen when a signal is applied to the line.  It is 
a physical characteristic resulting from the materials 
and geometry of the line. 

Lossless line:  0
LZ
C

≡  
V V
I I

+ −

+ −

= = −  

Lossy line:  0 0
zjR j LZ Z e

G j C
φ+ ω

≡ =
+ ω

 

L = inductance per unit length [H/cm] 
C = capacitance per unit length [F/cm] 
V+ = the forward-traveling (left to right) voltage [V] 
I+ = the forward-traveling (left to right) current [I] 
V- = the reverse-traveling (right to left) voltage [V] 
I- = the reverse-traveling (right to left) current [I] 
R = the line resistance per unit length [Ω/cm] 
G = the conductance per unit length [Ω-1/cm] 
φ = phase angle of the complex impedance [radians] 

 
y0   CHARACTERISTIC ADMITTANCE  [Ω−1]
The characteristic admittance is the reciprocal of 
the characteristic impedance.  

0
Cy
L

≡  I I
V V

+ −

+ −

= = −  

 

ρ   REFLECTION COEFFICIENT 
The reflection coefficient is the ratio of reflected 
voltage to the forward-traveling voltage, a value 
ranging from –1 to +1 which, when multiplied by the 
wave voltage, determines the amount of voltage 
reflected at one end of the transmission line. 

V I
V I

− −

+ +

ρ ≡ = −  

A reflection coefficient is present at each end of the 
transmission line: 

0
source

0

S

S

R z
R z

−
ρ =

+
 0

load
0

L

L

R z
R z

−
ρ =

+
 

 

τ   TRANSMISSION COEFFICIENT 
The transmission coefficient is the ratio of total 
voltage to the forward-traveling voltage, a value 
ranging from 0 to 2. 

totalV
V+

τ ≡  1= + ρ  

 
TOF   TIME OF FLIGHT   [s] 

The time of flight is how long it takes a signal to 
travel the length of the transmission line 

lTOF
v

≡  TOT TOTl LC L C= =  

l = length of the transmission line [cm] 
v =  the velocity of propagation 1/ LC , the speed at which 

the waveform moves down the line 
L = inductance per unit length [H/cm] 
C = capacitance per unit length [F/cm] 
LTOT = total inductance [H] 
CTOT = total capacitance [F] 

 
DERIVED EQUATIONS 
( )0 0 / 2TOT TOTV z I V I z+ += = +  

( )0 0 / 2TOT TOTV z I V I z− −= − = −

( )0 0 / 2TOT TOTI y V I V y+ += = +  

( )0 0 / 2TOT TOTI y V I V y− −= − = −  

 
Cn   FOURIER SERIES 

The function x(t) must be periodic in order to employ 
the Fourier series.  The following is the exponential 
Fourier series, which involves simpler calculations 
than other forms but is not as easy to visualize as the 
trigonometric forms. 

( )1
0

1

1 t T jn t
n t

C x t e dt
T

+ − ω= ∫  

Cn = amplitude 
T = period [s] 
t = time [s] 

n = the harmonic (an integer) 
ω0 = frequency 2π/T [radians] 

The function x(t) may be delayed in time.  All this does in a 
Fourier series is to shift the phase.  If you know the Cns for  
x(t), then the Cns for x(t-α) are just Cne-jnω0α.  (Here, Cns is 
just the plural of Cn.) 
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C   CAPACITANCE   [F] 

( )∫ +τ=
t

vdi
C

tv
0

01)(  cap
cap

dV
I C

dt
=  

( ) τ/
0)( t

ff evvvtv −−+=  ( ) τ/
0)( t

ff eiiiti −−+=  
τ−= /22

0)( teRitP  
v(t) = voltage across the capacitor, at time t [V] 
vf = final voltage across the capacitor, steady-state voltage 

[V] 
v0 = initial voltage across the capacitor [V] 
t = time [s] 
τ = the time constant, RC [seconds] 
C = capacitance [F] 
Natural log:  xebx b =⇔=ln  

 
C   PARALLEL PLATE CAPACITANCE 

AC
h

ε
=  per unit length

A wl wC
lh lh h
ε ε ε

= = =  

ε = permittivity of the material [F/cm] 
A = area of one of the capacitor plates [cm2] 
h = plate separation [cm] 
w = plate width [cm] 
l = plate length [cm] 
C = capacitance [F] 

 
CAPACITOR-TERMINATED LINE 

-+ VS LC

SR

 
Where the incident voltage is ( )0/

0 1 tV V e− τ
+ = − , 

01 // 01
0

0 1 0 1

222 tt
capV V V V e e− τ− τ

+ −

⎛ ⎞ττ
= + = + −⎜ ⎟τ − τ τ − τ⎝ ⎠

 

V0 = final voltage across the capacitor [V] 
t = time [s] 
τ0 = time constant of the incident wave, RC [s] 
τ1 = time constant effect due to the load, Z0CL [s] 
C = capacitance [F] 

 

SMITH CHART 
First normalize the load impedance by dividing by the 
characteristic impedance, and find this point on the chart.   
When working in terms of reactance X, an inductive load 
will be located on the top half of the chart, a capacitive load 
on the bottom half. It's the other way around when working 
in terms of susceptance B [Siemens]. 
Draw a straight line from the center of the chart through the 
normalized load impedance point to the edge of the chart. 
Anchor a compass at the center of the chart and draw a 
circle through the normalized load impedance point.  Points 
along this circle represent the normalized impedance at 
various points along the transmission line.  Clockwise 
movement along the circle represents movement from the 
load toward the source with one full revolution representing 
1/2 wavelength as marked on the outer circle.  The two 
points where the circle intersects the horizontal axis are the 
voltage maxima (right) and the voltage minima (left). 
The point opposite the impedance (180° around the circle) is 
the admittance Y [Siemens].  The reason admittance (or 
susceptibility) is useful is because admittances in parallel 
are simply added.  (Admittance is the reciprocal of 
impedance; susceptance is the reciprocal of reactance.) 

zj
Lez βΓ=Γ 2)(  

ze zj β∠=β 212  

1)(
1)()(

+
−

=
z
zz

Z
ZΓ  

1
1

+Γ
−Γ

=
L

L
LZ     

0Z
Z L=Z  

z = distance from load 
[m] 

j = 1−  
ρ = magnitude of the 

reflection coefficient 
β = phase constant 
Γ = reflection coefficient 
Z = normalized 

impedance [Ω] 
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SINGLE-STUB TUNING 
The basic idea is to connect a line stub in parallel 
(shunt) or series a distance d from the load so that the 
imaginary part of the load impedance will be canceled.

Shunt-stub:  Select d 
so that the admittance 
Y looking toward the 
load from a distance d 
is of the form Y0 + jB.  
Then the stub 
susceptance is chosen 
as –jB, resulting in a 
matched condition. 

Y

Open
or

short

l

Y0

0

d

Y0 YL

Series-stub:  Select d 
so that the admittance 
Z looking toward the 
load from a distance d 
is of the form Z0 + jX.  
Then the stub 
susceptance is chosen 
as -jX, resulting in a 
matched condition. 

LZ

l
0Z

Open
or

short

0Z

d

0Z

 
 

FINDING A STUB LENGTH 
Example: Find the lengths of open and shorted shunt stubs 
to match an admittance of 1-j0.5.  The admittance of an 
open shunt (zero length) is Y=0; this point is located at the 
left end of the Smith Chart x-axis.  We proceed clockwise 
around the Smith chart, i.e. away from the end of the stub, 
to the +j0.5 arc (the value needed to match –j0.5).  The 
difference in the starting point and the end point on the 
wavelength scale is the length of the stub in wavelengths.  
The length of a shorted-type stub is found in the same 
manner but with the starting point at Y=∞. 

rotage rnerdawoT

Admittance
(short)

Admittance
(open)

Shorted stub of
length .324
matches an
admittance
of 1-j.5

λ

.4
6λ.324

.4
7

.4
8

.4
9

.43

.44
.4

5

Y

1.
0.42

.4
.41

.38.39

0.
5

= 0

j

.06

.0
4

0
.0

1
.0

2
.0

3

λ.074

0 .
1

.0
5

Open stub of
length .074
matches an
admittance
of 1-j.5

λ

.07

0.5

0.
5

1.
0

.1

.08
.09

.5

1.
0

.11 .12

.33
.35.36.37

.34

2.0

.29
.3

.31

.32

5.0

.26
.27

.28

5

.17

2.
0

2

.15
.14.13

.16

.19

.21

Y

5.0

.2

.23
.25

.24
.22

∞=

.18

In this example, all values were in units of admittance.  If we 
were interested in finding a stub length for a series stub 
problem, the units would be in impedance.  The problem 
would be worked in exactly the same way.  Of course in 
impedance, an open shunt (zero length) would have the 
value Z=∞, representing a point at the right end of the x-axis. 
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LINE IMPEDANCE   [Ω] 
The impedance seen at the source end of a lossless 
transmission line: 

( )
( )

0
0 0

0

tan1
1 tan

L
in

L

Z jZ l
Z Z Z

Z jZ l
+ β+ ρ

= =
− ρ + β

   

For a lossy transmission line: 

( )
( )

0
0

0

tanh
tanh

L
in

L

Z Z l
Z Z

Z Z l
+ γ

=
+ γ

   

Line impedance is periodic with spatial period λ/2. 

Z0 = /L C , the characteristic impedance of the line. [Ω]  
ρ = the reflection coefficient 
ZL = the load impedance [Ω] 
β = 2π/λ, phase constant 
γ = α+jβ, complex propagation constant 

 

λ   WAVELENGTH   [cm] 
The physical distance that a traveling wave moves 
during one period of its periodic cycle. 

f
v

k
p=

π
=

β
π

=λ
22  

β = LCω  = 2π/λ, phase constant 

k = µεω  = 2π/λ, wave number 

vp = velocity of propagation [m/s] see p 2. 
f = frequency [Hz] 

 

λ/4   QUARTER-WAVE SECTION 
A quarter-wave section of transmission line has the 
effect of inverting the normalized impedance of the 
load. 

/4λ

Zin Z 0 RL = Z 0

2
 

To find Zin, we can normalize the load (by dividing by the 
characteristic impedance), invert the result, and 
"unnormalize" this value by multiplying by the characteristic 
impedance. 

In this case, the normalized load is 0
0

1
2 2
Z Z÷ =  

so the normalized input impedance is  
11 2

2

−
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

and the actual input impedance is  02inZ Z=  

 

γ  COMPLEX PROPAGATION CONSTANT 
The propagation constant for lossy lines, taking into 
account the resistance and inductance along the line 
as well as the resistive and capacitive path between 
the conductors. 

( )( )j ZY R j L G j Cγ = α + β = = + ω + ω  

CG

L R

 
α = attenuation constant, the real part of the complex 

propagation constant, describes the loss 
β = 2π/λ, phase constant, the complex part of the complex 

propagation constant 
Z = series impedance (complex, inductive) per unit length 

[Ω/cm] 
Y = shunt admittance (complex, capacitive) per unit length 

[Ω-1/cm] 
R = the resistance per unit length along the transmission 

line [Ω/cm] 
G = the conductance between conductors per unit length 

[Ω-1/cm] 
L = inductance per unit length [H/cm] 
C = capacitance per unit length [F/cm] 
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MODULATED WAVE 
Suppose we have a disturbance composed of two 
frequencies: 

( ) ( )0 0sin t zω − δω − β − δβ⎡ ⎤⎣ ⎦  

and   ( ) ( )0 0sin t zω + δω − β + δβ⎡ ⎤⎣ ⎦  

where ω0 is the average frequency and β0 is the average 
phase. 

Using the identity  2cos sin sin sin
2 2

A B A B A B− +⎛ ⎞ ⎛ ⎞ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The combination (sum) of these two waves is 

( ) ( )0 0

envelope carrier

2cos sint z t zδω − δβ ω −β
14424431442443

 

The envelope moves at the group velocity, see p 7. 

δ = "the difference in"… 
ω0 = carrier frequency [radians/second] 
ω = modulating frequency [radians/second] 
β0 = carrier frequency phase constant 
β = phase constant 
So the sum of two waves 
will be a modulated wave 
having a carrier frequency 
equal to the average 
frequency of the two waves, 
and an envelope with a 
frequency equal to half the 
difference between the two 
original wave frequencies. 

 
vg   GROUP VELOCITY   [cm/s] 

The velocity at which the envelope of a modulated 
wave moves. 

2

2

1 1 c
g

P

v
LC

ωδω
= = −

δβ ω
   where: 

L = inductance per unit length [H/cm] 
CP = capacitance per unit length [F/cm] 
ε = permittivity of the material [F/cm] 
µ = permeability of the material, dielectric constant [H/cm] 
ωc = carrier frequency [radians/second] 
ω = modulating frequency [radians/second] 
β = phase constant 
Also, since β may be given as a function of ω, remember 

1

g
dv
d

−β⎛ ⎞= ⎜ ⎟ω⎝ ⎠
 

 

OMEGA - BETA GRAPH 
This representation is commonly used for modulated 
waves. 

ωc

ω

β

d
dβ

ω
LC

slope is phase velocity 
for a particular

slope is

ω = β

, group velocity

ω, β.

 
 

δ   SKIN DEPTH   [cm] 
The depth into a material at which a wave is 
attenuated by 1/e (about 36.8%) of its original 
intensity.  This isn't the same δ that appears in the 
loss tangent, tan δ. 

1 2
δ = =

α ωµσ
   where: 

α = attenuation constant, the real part of the complex 
propagation constant, describes loss 

µ = permeability of the material, dielectric constant [H/cm] 
ω = frequency [radians/second] 
σ = (sigma) conductivity [Siemens/meter] see p12. 

Skin Depths of Selected Materials 
 60 Hz 1 MHz 1 GHz 

silver 
copper 
gold 
aluminum 
iron 

8.27 mm 
8.53 mm 

10.14 mm 
10.92 mm 

0.65 mm 

0.064 mm 
0.066 mm 
0.079 mm 
0.084 mm 
0.005 mm 

0.0020 mm 
0.0021 mm 
0.0025 mm 
0.0027 mm 
0.00016 mm 
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MAXWELL'S EQUATIONS 
Maxwell's equations govern the principles of 
guiding and propagation of electromagnetic 
energy and provide the foundations of all 
electromagnetic phenomena and their 
applications.  The time-harmonic expressions can 
be used only when the wave is sinusoidal. 

 STANDARD FORM 
(Time Domain) 

TIME-HARMONIC 
(Frequency Domain) 

Faraday's 
Law t

∂
∇×

∂
BE = -
v

v
 jE B∇× ω= -

v v
 

Ampere's 
Law* t

∂
∇ × +

∂
DH = J
v

v v
 jH D J∇× ω +=

v v v
 

Gauss' 
Law v∇ ⋅ ρD =

v
 vD∇ ⋅ ρ=

v
 

no name 
law 

0∇ ⋅ B =
v

 0B∇ ⋅ =
v

 

E = electric field [V/m] 
B = magnetic flux density [W/m2 or T]  B = µ0H 
t = time [s] 
D = electric flux density [C/m2]  D = ε0E 
ρ = volume charge density [C/m3] 
H = magnetic field intensity [A/m] 
J = current density [A/m2] 

*Maxwell added the 
t

∂
∂
D  term to Ampere's Law. 

 
 

ELECTROMAGNETIC WAVES 
 

MODELING MAXWELL'S EQUATIONS 
This is a model of a wave, analogous to a 
transmission line model. 

= ε
[F/m]

=
Ω-1[    /m]

L = µ [H/m]

G σ C

 
L = inductance per unit length [H/cm] 
µ = permeability of the material, dielectric constant [H/cm] 
G = the conductance per unit length [Ω-1/cm] 
σ = (sigma) conductivity [Siemens/meter] 
C = capacitance per unit length [F/cm] 
ε = permittivity of the material [F/cm] 

propagation constant:  ( )( )j jγ = ωµ ωε + σ  

 
LOW FREQUENCY 

At low frequencies, more materials behave as 
conductors.  A wave is considered low frequency 
when  

σ
ω

ε
�  σ

ε
 is the dielectric relaxation frequency 

( )1 1 jη = +
σδ

intrinsic wave impedance, see p 12. 

What happens to the complex propagation constant at low 
frequency?  From the wave model above, gamma is  

( )( ) 1 jj j j ωε
γ = ωµ ωε + σ = ωµσ +

σ
 

Since both ω and ε/σ are small 

( )11 1
2

j j jε⎛ ⎞γ = ωµσ + ω = ωµσ⎜ ⎟σ⎝ ⎠
 

Since 1 1
2 2

j j= +  

1 1
2 22 2

j jωµσ ωµσ⎛ ⎞γ = ωµσ + = +⎜ ⎟
⎝ ⎠

 

So that, with jγ = α + β  

we get  
2

ωµσ
α = ,   

2
ωµσ

β =   or  ( )j+
δ

=γ 11
 

α = attenuation constant, the real part of the complex 
propagation constant, describes the loss 

β = phase constant, the complex part of the complex 
propagation constant  

σ = (sigma) conductivity [Siemens/cm] 
δ = skin depth [cm] 
So the wave is attenuating at the same rate that it is 
propagating. 
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HIGH FREQUENCY 
At high frequencies, more materials behave as 
dielectrics, i.e. copper is a dielectric in the gamma 
ray range.  A wave is considered high frequency when

σ
ω

ε
�  

σ
ε

 is the dielectric relaxation frequency 

µ
η =

ε
 intrinsic wave impedance, see p 12. 

What happens to the complex propagation constant at high 
frequency?  

( )( ) 1j j j j
j

⎛ ⎞σ
γ = ωµ ωε + σ = ωµ ωε +⎜ ⎟ωε⎝ ⎠

 

Since both 1/ω and σ/ε are small 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ωε
σ

+µεω=γ
j

j
2
11     µεω+

ε
µσ

=γ j
2

 

With jγ = α + β  

we get  
2
σ µ

α =
ε

,   β = ω µε ,    

 

tan δ   LOSS TANGENT 
The loss tangent, a value between 0 and 1, is the loss 
coefficient of a wave after it has traveled one 
wavelength.  This is the way data is usually presented 
in texts.  This is not the same δ that is used for skin 
depth. 

tan σ
δ =

ωε
 

Graphical representation of 
loss tangent: 

For a dielectric, 
tan 1δ � . 

( )1 tan tan
2

π
α ≈ δ β = δ

λ
 

δ

(  )IImag.

ωε

σ
(  )IRe 

 
ωε  is proportional to the amount of current going through 
the capacitance C. 
σ  is proportional to the amount current going through the 
conductance G. 

 

TEM WAVES 
Transverse Electromagnetic Waves 

Electromagnetic waves that have single, orthogonal 
vector electric and magnetic field components (e.g., Ex 
and Hy ), both varying with a single coordinate of 
space (e.g., z), are known as uniform plane waves or 
transverse electromagnetic (TEM) waves.  TEM 
calculations may be made using formulas from 
electrostatics; this is referred to as quasi-static 
solution. 

Characteristics of TEM Waves 
• The velocity of propagation (always in the z direction) is 

µε= /1pv , which is the speed of light in the material 

• There is no electric or magnetic field in the direction of 
propagation.  Since this means there is no voltage drop in 
the direction of propagation, it suggests that no current 
flows in that direction. 

• The electric field is normal to the magnetic field 
• The value of the electric field is η times that of the 

magnetic field at any instant. 
• The direction of propagation is given by the direction of 

HE× . 
• The energy stored in the electric field per unit volume at 

any instant and any point is equal to the energy stored in 
the magnetic field. 

 
TEM ASSUMPTIONS 

Some assumptions are made for TEM waves.  

0z =E   

0σ =   

0z =H   

time dependence j te ω   
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WAVE ANALOGIES 

Plane waves have many characteristics analogous to 
transmission line problems. 

Transmission Lines Plane Waves 

Phase constant 

2

p

LC
v
ω π

β ω = =
λ

=  

Wave number 

2

p

k
v
ω π

= ω µε = =
λ

 

Complex propagation const. 

( )( )
j

R j L G j C

γ = α + β

= + ω + ω
 

Complex propagation 
constant 

( )( )j jγ = ωµ ωε + σ  

Velocity of propagation 

1
pv

LC
ω

= =
β

 

Phase velocity 

1 2
pv c

k
ω πδ

= = = ωδ =
λµε

 

Characteristic impedance 

0
L VZ
C I

+

+

= =  

Intrinsic impedance 

x

y

E
H

+

+

µ
η = =

ε
 

Voltage 

( ) j z j zV z V e V e− β β
+ −= +  

Electric Field 

( ) jkz jkz
xE z E e E e−

+ −= +  

Current 

( )
0

1 j z j zI z V e V e
Z

− β β
+ −⎡ ⎤= −⎣ ⎦

 

Magnetic Field 

( ) 1 jkz jkz
yH z E e E e−

+ −⎡ ⎤= −⎣ ⎦η
 

Line input impedance 

( )
( )

0
0

0

tan
tan

L
in

L

Z jZ l
Z Z

Z jZ l
+ β

=
+ β

 

( )
( )

0
0

0

tanh
tanh

L
in

L

Z Z l
Z Z

Z Z l
+ γ

=
+ γ

 

Wave input impedance 

( )
( )

0
0

0

tan
tan

L
in

L

j kl
j kl

η + η
η = η

η + η
 

( )
( )

0
0

0

tanh
tanh

L
in

L

l
l

η + η γ
η = η

η + η γ
 

Reflection coefficient 

0

0

L

L

Z Z
Z Z

−
ρ =

+
 

Reflection coefficient 

0

0

L

L

η − η
ρ =

η + η
 

 

k   WAVE NUMBER   [rad./cm] 

The phase constant for the uniform plane wave; the 
change in phase per unit length.  It can be considered 
a constant for the medium at a particular frequency. 

2k
v
ω π

= = ω µε =
λ

 

k appears in the phasor forms of the uniform plane wave 

( ) jkzjkz
x eEeEzE 21 += − , etc. 

k has also been used as in the "k of a dielectric" meaning εr. 

 
η (eta)   INTRINSIC WAVE IMPEDANCE  [Ω] 

The ratio of electric to magnetic field components.  
Can be considered a constant of the medium.  For 
free space, η = 376.73Ω.  The units of η are in ohms. 

+

+

+

+ −==η
x

y

y

x

H
E

H
E

        
−

−

−

− −==η−
x

y

y

x

H
E

H
E

 

at low frequencies 

( )1 1 jη = +
σδ

 

 at high frequencies 

µ
η =

ε
 

When an electromagnetic 
wave encounters a sheet of 
conductive material it sees an 
impedance.  K is the direction 
of the wave, H is the magnetic 
component and E is the 
electrical field.  E × H gives the 
direction of propagation K. 

K
E

H
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SHEET RESISTANCE   [Ω] 

Consider a block of material with conductivity σ. 

w

t

l

 

It's resistance is    
lR

wt
=

σ
  Ω. 

If the length is equal to the width, this reduces to     

1R
t

=
σ

  Ω. 

And this is sheet resistance. 

 
HIGH FREQUENCY RESISTANCE   [Ω] 

When a conductor carries current at high frequency, 
the electric field penetrates the outer surface only 
about 1 skin depth so that current travels near the 
surface of the conductor.  Since the entire cross-
section is not utilized, this affects the resistance of the 
conductor. 

Cross-section 
of a conductor  
showing current 
flow near the surface: 

w

t δ

 

( )
01 1

perimeter 2 2 2
R

w t
ωµ

≈ =
σδ σ +

 

σ = (sigma) conductivity (5.8×105 S/cm for copper) 
[Siemens/meter] 

ω = frequency [radians/second] 
δ = skin depth [cm] 
µ0 = permeability of free space µ0 = 4π×10-9 [H/cm] 
w = width of the conductor [cm] 
t = thickness of the conductor [cm] 

 

ηin   WAVE INPUT IMPEDANCE   [Ω] 

The impedance seen by a wave in a medium. 
For example, the impedance of a metal sheet in a vacuum: 

η

inη

0

l

metal

ηL

vacuum

 
Note that a transmission line model is used here because it 
is analogous to a wave traveling in a medium.  The "load" is 
the element most remote in the direction of propagation. 

The input impedance is    
( )
( )l

l

L

L
in γη+η

γη+η
η=η

tanh
tanh

0

0
0   Ω. 

In this example, l is the thickness of a metal sheet.  If the 
metal thickness is much greater than the skin depth, then 

( ) ( ) ( )( )[ ] 11number bigtanh11tanhtanh ≈+=⎥⎦
⎤

⎢⎣
⎡ +
δ

=λ jljl  

If l is much less than the skin depth δ, then 

( ) ( ) ( )( )[ ]

( )( ) ( )jlj

jljl

+
δ

=+=

+=⎥⎦
⎤

⎢⎣
⎡ +
δ

=λ

11number small same

1number smalltanh11tanhtanh
 

 

µ   MAGNETIC PERMEABILITY   [H/m] 

The relative increase or decrease in the resultant 
magnetic field inside a material compared with the 
magnetizing field in which the given material is 
located.  The product of the permeability constant and 
the relative permeability of the material. 

0 rµ = µ µ    where µ0 = 4π×10-7 H/m 

Relative Permeabilities of Selected Materials 

Air 1.00000037 
Aluminum 1.000021 
Copper 0.9999833 
Gold 0.99996 
Iron (99.96% pure) 280,000 
Iron (motor grade) 5000 
Lead 0.9999831 

Manganese 1.001 

Mercury 0.999968 
Nickel 600 

Oxygen 1.000002 

Platinum 1.0003 

Silver 0.9999736 
Titanium 1.00018 

Tungsten 1.00008 
Water 0.9999912 
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ε   ELECTRIC PERMITTIVITY   [F/m] 

The property of a dielectric material that determines 
how much electrostatic energy can be stored per unit 
of volume when unit voltage is applied, also called the 
dielectric constant.  The product of the constant of 
permittivity and the relative permittivity of a material. 

0 rε = ε ε      where ε0 = 8.85×10-14 F/cm 

 

εc   COMPLEX PERMITTIVITY 

c j′ ′′ε = ε − ε      where  tan c
′′ε

= δ
′ε

 

In general, both ′ε and ′′ε depend on frequency in 
complicated ways.  ′ε  will typically have a constant 
maximum value at low frequencies, tapering off at higher 
frequencies with several peaks along the way.  ′′ε  will 
typically have a peak at the frequency at which  ′ε  begins to 
decline in magnitude as well as at frequencies where ′ε  has 
peaks, and will be zero at low frequencies and between 
peaks. 

 

εr   RELATIVE PERMITTIVITY 

The permittivity of a material is the relative permittivity 
multiplied by the permittivity of free space 

0rε = ε × ε  

In old terminology, εr is called the "k of a dielectric".  Glass 
(SiO2) at εr = 4.5 is considered the division between low k 
and high k dielectrics. 

Relative Permittivities of Selected Materials 
Air (sea level) 1.0006 
Ammonia 22 
Bakelite 5 
Glass 4.5-10 
Ice 3.2 
Mica 5.4-6 
most metals ~1 
Plexiglass 3.4 
Porcelain 5.7 
Paper 2-4 
Oil 2.1-2.3 

Polystyrene 2.6 
Polyethylene 2.25 
Rubber 2.2-4.1 
Silicon 11.9 
Soil, dry 2.5-3.5 
Styrofoam 1.03 
Teflon 2.1 
Vacuum 1 
Water, distilled 81 
Water, seawater 72-80 

NOTE:  Relative permittivity data is given for materials at 
low or static frequency conditions.  The permittivity for 
most materials varies with frequency.  The relative 
permittivities of most materials lie in the range of 1-25.  At 
high frequencies, the permittivity of a material can be quite 
different (usually less), but will have resonant peaks. 

 

σ   CONDUCTIVITY   [S/m] or [1/(Ω·m)] 

A measure of the ability of a material to conduct 
electricity, the higher the value the better the material 
conducts.  The reciprocal is resistivity.  Values for 
common materials vary over about 24 orders of 
magnitude.  Conductivity may often be determined 
from skin depth or the loss tangent. 

2
c e

e th

n q l
m v

σ =  S/m     where  

nc = density of conduction electrons (for copper this is 
8.45×1028) [m-3] 

qe = electron charge? 1.602×10-23 [C] 
l  = vthtc the product of the thermal speed and the mean 

free time between collisions of electrons, the average 
distance an electron travels between collisions [m] 

me = the effective electron mass? [kg] 
vth = thermal speed, usually much larger than the drift 
velocity vd.   [m/s] 

Conductivities of Selected Materials   [1/(Ω·m)] 
Aluminum 3.82×107 
Carbon 7.14×104 
Copper (annealed) 5.80×107 
Copper (in class) 6.80×107 
Fresh water ~10-2 
Germanium ~2.13 
Glass ~10-12 

Gold 4.10×107 

Iron 1.03×107 

Lead 4.57×10 

Mercury 1.04×106 

Nicrome 1.00×106 

Nickel 1.45×107 

Seawater 4 
Silicon ~4.35×10-4 

Silver 6.17×107 

Sodium 2.17×107 

Stainless steel 1.11×106 

Tin 8.77×106 

Titanium 2.09×106 
Zinc 1.67×107 

 
P   POWER   [W] 

Power is the time rate of change of energy. 

Power reflected at a discontinuity:   100power % 2 ×ρ=  

Power transmitted at a discontinuity:   ( ) 1001power % 2 ×ρ−=  
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MICROSTRIP CONDUCTORS 
How fast does a wave travel in a microstrip?  The 
question is complicated by the fact that the dielectric 
on one side of the strip may be different from the 
dielectric on the other side and a wave may travel at 
different speeds in different dielectrics.  The solution is 
to find an effective relative permittivity εr eff for the 
combination. 

h

t
w

 

Some Microstrip Relations 
air

0 0 effrZ Z= ε  
airair

0 0 0C Z = ε µ  

( )2air total
0 0 0 0L Z C Z= ε µ =  air

0 0LC = ε µ  

0 total

LZ
C

=  
air

0 air

LZ
C

=  

0 0 effrj jγ = β = ω ε µ ε  
total

eff airr
C
C

ε =  

total
0 0 eff

1 1
p

r

v
LC

= =
ε µ ε

 

It's difficult to get more than 200Ω for Z0 in a microstrip. 

Microstrip Approximations 

eff
1 1

2 2 1 12 /
r r

r h w
ε + ε −

ε = +
+

 

eff

0

eff

60 8ln , for 1
4

120 , for 1
1.393 0.667 ln 1.444

r

r

h w w
w h h

Z w
hw w

h h

⎧ ⎡ ⎤+ ≤⎪ ⎢ ⎥ε ⎣ ⎦⎪⎪= ⎨ π
>⎪ ⎡ ⎤⎛ ⎞⎪ ε + + +⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

 

( ) ( )

2

8 , 2
2

2 1 0.611 ln 2 1 ln 1 0.39 , 2
2

A

A

r

r r

e w
e hw

wh B B B
h

⎧
<⎪ −⎪= ⎨ ⎧ ⎫⎡ ⎤ε −⎪ ⎪⎪ − − − + − + − >⎨ ⎬⎢ ⎥⎪π ε ε⎪ ⎪⎣ ⎦⎩ ⎭⎩

 

where  0 1 1 0.110.23
60 2 1

r r

r r

ZA
⎛ ⎞ε + ε −

= + +⎜ ⎟ε + ε⎝ ⎠
, 

0

377
2 r

B
Z

π
=

ε
 

 

STRIPLINE CONDUCTOR 

Also called shielded microstrip.  The effective relative 
permittivity is used in calculations. 

t
w h2

h1
 

assuming hw 10≥ ,       1 1 2 2
eff

1 2

r r
r

h h
h h

ε + ε
ε =

+
  where 

εr1 = the relative permittivity of the dielectric of thickness h1. 
εr2 = the relative permittivity of the dielectric of thickness h2. 

 
COPPER CLADDING 

The thickness of copper on a circuit board is 
measured in ounces.  1-ounce cladding means that 1 
square foot of the copper weighs 1 ounce.  1-ounce 
copper is 0.0014" or 35.6 µm thick. 

 

αd   DIELECTRIC LOSS FACTOR   [dB/cm] 

( )
( )

δ
−εε

−εεβ
=α tan

12
1

68.8
eff

eff0

rr

rr
d  

 

αc   CONDUCTOR LOSS FACTOR   [dB/cm]

02
68.8

Z
R

c =α ,        
( ) ( )perimeter

1
2perimeter

1 0

σ
ωµ

=
σδ

=R  
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WHEELER'S EQUATION 

Another approximation for microstrip calculations is 
Wheeler's equation. 

2

2
0

8 8 114 14 1
42.4 4 4 4ln 1

11 11 21
r r r

r

h h hZ
w w w

⎛ ⎞⎧ ⎫⎡ ⎤⎛ ⎞⎜ ⎟⎪ ⎪⎢ ⎥+ + +⎜ ⎟⎜ ⎟ε ε ε⎪ ⎪⎢ ⎥⎜ ⎟= + × + × +π⎨ ⎬⎜ ⎟⎢ ⎥′ ′ ′+ε ⎜ ⎟⎪ ⎪⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭⎝ ⎠

 

where 
0

0

4 17 1
8 exp 1 1

11 42.4 0.81

exp 1 1
42.4

r r
r

r

Zh
w

Z

+ +
⎡ ⎤ε ε⎛ ⎞ε + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦′ =

⎛ ⎞ε + −⎜ ⎟
⎝ ⎠

 

 

NETWORK THEORY 
 

Sij   SCATTERING PARAMETER 

excitation port observation port

Si j

 

A scattering parameter, represented by Sij, is a 
dimensionless value representing the fraction of wave 
amplitude transmitted from port j into port i, provided 
that all other ports are terminated with matched loads 
and only port j is receiving a signal.  Under these 
same conditions, Sii is the reflection coefficient at port 
i. 

To experimentally determine the scattering 
parameters, attach an impedance-matched generator 
to one of the ports (excitation port), attach 
impedance-matched loads to the remaining ports, and 
observe the signal received at each of the ports 
(observation ports).  The fractional amounts of signal 
amplitude received at each port i will make up one 
column j of the scattering matrix.  Repeating the 
process for each column would require n2 
measurements to determine the scattering matrix for 
an n-port network.   

 
Sij   SCATTERING MATRIX 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

NNNN

N

N

SSS

SSS
SSS

L

MOMM

L

L

21

22221

11211

 

The scattering matrix is an n×n matrix composed of 
scattering parameters that describes an n-port 
network. 

The elements of the diagonal of the scattering matrix 
are reflection coefficients of each port.  The elements 
of the off-diagonal are transmission coefficients, under 
the conditions outlined in "SCATTERING 
PARAMETER". 
If the network is internally matched or self-matched, then 

11 22 0NNS S S= = = =L , that is, the diagonal is all zeros. 

The sum of the squares of each column of a scattering 
matrix is equal to one, provided the network is lossless. 
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an, bn   INCIDENT/REFLECTED WAVE 
AMPLITUDES 

The parameters an and bn describe the incident and 
reflected waves respectively at each port n.  These 
parameters are used for power and scattering matrix 
calculations. 

The amplitude of the wave incident to 
port n is equal to the amplitude of the 
incident voltage at the port divided by 
the square root of the port impedance. 0

n
n

n

Va
Z

+

=  

Amplitude of the wave reflected at port 
n is equal to the amplitude of the 
reflected voltage at the port divided by 
the square root of the port impedance. 0

n
n

n

Vb
Z

−

=  

The scattering parameter is equal to the wave 
amplitude output at port i divided by the wave 
amplitude input at port j provided the only 
source is a matched source at port j and all 
other ports are connected to matched loads. 

i
ij

j

bS
a

=  

The relationship between the S-parameters 
and the a- and b-parameters can be written in 
matrix form where S is the scattering matrix 
and a and b are column vectors. 

=b Sa  

Power flow into any port is shown as 
a function of a- and b-parameters. ( )2 21

2
P a b= −  

The ratio of the input power at port 
j to the output power at port I can 
be written as a function of a- and 
b-parameters or the S-parameter. 

2

jj
2 2

i j ij

1in

out

aP
P b S

= =  

 
RECIPROCITY 

A network is reciprocal when Sij = Sji in the scattering 
matrix, i.e. the matrix is symmetric across the 
diagonal.  Also, Zij = Zji and Yij = Yji.  Networks 
constructed of “normal materials” exhibit reciprocity. 
Reciprocity Theorem: 

∫∫ ⋅×=⋅×
S abS ba dsHEdsHE

vvvv
 

Ea and Hb are fields from two different sources. 

 

LOSSLESS NETWORK 

A network is lossless when 
†S S = /  

† means to take the complex conjugate and transpose the 
matrix.  If the network is reciprocal, then the transpose 
is the same as the original matrix. 

/ = a unitary matrix.  A unitary matrix has the properties: 

*

1
1

N

ki ki
k

S S
=

=∑  *

1
0

N

ki kj
k

S S
=

=∑  

In other words, a column of a unitary matrix multiplied by its 
complex conjugate equals one, and a column of a unitary 
matrix multiplied by the complex conjugate of a different 
column equals zero. 

 
RAT RACE OR HYBRID RING NETWORK 

The rat race or hybrid 
ring network is lossless, 
reciprocal, and 
internally matched. 
 4

λ
4
λ

2 4
λ

3

1

λ3
4

4

 
The signal splits upon entering the network and half travels 
around each side.  A signal entering at port 1 and exiting at 
port 4 travels ¾ of a wavelength along each side, so the 
signals are in phase and additive.  From port 1 to port 3 the 
signal travels one wavelength along one side and ½ 
wavelength along the other, arriving a port 3 out of phase 
and thus canceling. From port 1 to port 2 the paths are ¼ 
and 5/4 wavelengths respectively, thus they are in phase 
and additive. 
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DIRECTIONAL COUPLER 

The directional coupler is a 4-
port network similar to the rat 
race.  It can be used to 
measure reflected and 
transmitted power to an 
antenna. 3 4

1 2

 
An input at one port is divided between two of the remaining 
ports.  The coupling factor, measured in dB, describes the 
division of signal strength at the two ports.  For example if 
the coupler has a coupling factor of –10 dB, then a signal 
input at port 1 would appear at port 4 attenuated by 10 dB 
with the majority of the signal passing to port 2.  In other 
words, 90% of the signal would appear at port 2 and 10% at 
port 4.  (-10 dB means "10 dB down" or 0.1 power, -6 dB 
means 0.25 power, and –3 dB means 0.5 power.)  A 
reflection from port 2 would appear at port 3 attenuated by 
the same amount.  Meters attached to ports 3 and 4 could 
be used to measure reflected and transmitted power for a 
system with a transmitter connected to port 1 and an 
antenna at port 2.  The directivity of a coupler is a 
measurement of how well the coupler transfers the signal to 
the appropriate output without reflection due to the coupler 
itself; the directivity approaches infinity for a perfect coupler.  

( )3 1directivity 10log /p p= , where the source is at port 1 

and the load is at port 2. 
The directional coupler is lossless 
and reciprocal.  The scattering 
matrix looks like this.  In a real 
coupler, the off-diagonal zeros 
would be near zero due to leakage. 

0 0
0 0

0 0
0 0

p q
p q

q p
q p

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
CIRCULATOR 

The circulator is a 3-port 
network that can be 
used to prevent 
reflection at the antenna 
from returning to the 
source. 

l

l

l
β−

β+

1

2

3  
Port 3 is terminated internally by a matched load.  With a 
source at 1 and a load at 2, any power reflected at the load 
is absorbed by the load resistance at port 3.  A 3-port 
network cannot be both lossless and reciprocal, so the 
circulator is not reciprocal. 
Schematically, the 
circulator may be depicted 
like this: 

 

 

The circulator is lossless 
but is not reciprocal.  The 
scattering matrix looks like 
this: 

0 0 1
1 0 0
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

MAXWELL'S EQUATIONS, TIME 
HARMONIC FORM 

j∇× = ωµHE -  "curl on E" 

j∇× = ωµEH -  "curl on H" 

( ) ( ) ( )ˆ ˆ ˆ, , , j t z
x y zE x y E x y E x y e ω −γ⎡ ⎤= + +⎣ ⎦x y zE  

( ) ( ) ( )ˆ ˆ ˆ, , , j t z
x y zH x y H x y H x y e ω −γ⎡ ⎤= + +⎣ ⎦x y zH  

From the curl equations we can derive:   

(1) z
y x

E E j H
y

∂
+ γ = − ωµ

∂
 (4)  z

y x
H H j E
y

∂
+ γ = ωε

∂
 

(2)  z
x y

E E j H
x

∂
− − γ = − ωµ

∂
 (5)  z

x y
H H j E
x

∂
− − γ = ωε

∂
 

(3)  y x
z

E E j H
x y

∂ ∂
− = − ωµ

∂ ∂
 (6)  y x

z

H H j E
x y

∂ ∂
− = ωε

∂ ∂
 

From the above equations we can obtain:   

(1) & (5) 
2 2

1 z z
x

E HH j
y x

⎛ ⎞∂ ∂
= ωε − γ⎜ ⎟γ + ω µε ∂ ∂⎝ ⎠

 

(2) & (4)  
2 2

1 z z
y

E HH j
x y

⎛ ⎞∂ ∂
= ωε − γ⎜ ⎟γ + ω µε ∂ ∂⎝ ⎠

 

(2) & (4)  
2 2

1 z z
x

E HE j
x y

⎛ ⎞∂ ∂
= − −γ + ωµ⎜ ⎟γ + ω µε ∂ ∂⎝ ⎠

 

(1) & (5)  
2 2

1 z z
y

E HE j
y x

⎛ ⎞∂ ∂
= − −γ + ωµ⎜ ⎟γ + ω µε ∂ ∂⎝ ⎠

 

This makes it look like if Ez and Hz are zero, then  Hx, Hy, Ex, 
and Ey are all zero.  But since 0 0∞ × ≠ , we could have 
non-zero result for the TEM wave if 

2 2 jγ = −ω µε ⇒ γ = ω µε .  This should look familiar. 
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WAVE EQUATIONS 

From Maxwell's equations and a vector identity on 
curl, we can get the following wave equations:   

2 2∇ = ω µεE - E  "del squared on E" 
2 2∇ = ω µεH H  "del squared on H" 

The z part or "del squared on Ez" is:   
2 2 2

2 2
2 2 2
z z z

z z
E E EE E
x y z

γ γ γ
∇ = + + = −ω µε

∂ ∂ ∂
 

Using the separation of variables, we can let:   

( ) ( ) ( )zE X x Y y Z z= ⋅ ⋅  

We substitute this into the previous equation and divide by 
X·Y·Z to get:   

2 22

2 2 2
2

2 2 2
a constant

1 1 1

x zy
k kk

d X d Y d Z
X dx Y dy Z dz

− −−

+ + = −ω µε123
14243 123123

 

Since X, Y, and Z are independent variables, the only way 
the sum of these 3 expressions can equal a constant is if all 
3 expressions are constants. 

So we are letting  
2 2

2 2
2 2

1
z z

d Z d Zk Zk
Z dz dz

= − ⇒ = −  

A solution could be  zZ e−γ=  

so that  
22 z z

ze k e−γ −γγ = −  and  
2 2

zk− = γ  

Solutions for X and Y are found 

( ) ( )
2

2
2

1 sin cosx x x
d X k X A k x B k x

X dx
= − ⇒ = +  

( ) ( )
2

2
2

1 sin cosy y y
d Y k Y C k y D k y

Y dy
= − ⇒ = +  

giving us the general solution  
2 2 2 2

x yk k+ − γ = ω µε  

For a particular solution we need to specify initial conditions 
and boundary conditions.  For some reason, initial 
conditions are not an issue.  The unknowns are kx, ky, A, B, 
C, D.  The boundary conditions are 

tan 0E =  tan 0H
n

∂
=

∂
 

Etan = the electric field tangential to a conducting surface 
Htan = the magnetic field tangential to a conducting surface 
n = I don't know 

 

TM, TE WAVES IN PARALLEL PLATES 

TM, or transverse magnetic, 
means that magnetic waves 
are confined to the transverse 
plane.  Similarly, TE 
(transverse electric) means 
that electrical waves are 
confined to the transverse 
plane.  

d
x

y

 
(z direction is into page) 

Transverse plane means the plane that is transverse to 
(perpendicular to) the direction of propagation.  The 
direction of propagation is taken to be in the z direction, so 
the transverse plane is the x-y plane.  So for a TM wave, 
there is no Hz component (magnetic component in the z 
direction) but there is an Ez component. 

( )sin z
z xE A k x e−γ=  

A = amplitude [V] 

x
mk
d
π

=   The magnetic field must be zero at the plate 

boundaries.  This value provides that characteristic.  
[cm-1] 

x = position; perpendicular distance from one plate. [cm] 
d = plate separation [cm] 
γ = propagation constant 
z = position along the direction of propagation [cm] 
m = mode number; an integer greater than or equal to 1 

( )22 kxγ = −ω µε +  
Notice than when ( )2 2kx ≥ ω µε , the quantity under the 

square root sign will be positive and γ will be purely real.  In 
this circumstance, the wave is said to be evanescent.  The 
wavelength goes to infinity; there is no oscillation or 
propagation.  On the other hand, when ( )2 2kx < ω µε , γ is 

purely imaginary. 

The magnitude of Ez is related 
to its position between the 
plates and the mode number 
m.  Note that for m = 2 that 
d = λ. 

+max-max

d

x
m =1

Ez

m =2
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GENERAL MATHEMATICAL 

COMPLEX TO POLAR NOTATION 

j in polar notation: 

2
j

j e
π

=     

So we can find the square root of j: 

2 4 1 1
2 2

j j
j e e j

π π

= = = +     unit circle 

Imag.j

j

Re 

 

 
dBm   DECIBELS RELATIVE TO 1 mW 

The decibel expression for power.  The logarithmic 
nature of decibel units translates the multiplication and 
division associated with gains and losses into addition 
and subtraction.   

 0 dBm = 1 mW 
 20 dBm = 100 mW 
 -20 dBm = 0.01 mW 

( ) ( )dBm 10log mWP P= ⎡ ⎤⎣ ⎦  

( ) ( )dBm /10mW 10PP =  

 
PHASOR NOTATION 

To express a derivative in phasor notation, replace 

t
∂
∂

 with  jω .  For example, the  

Telegrapher's equation 
V IL
z t

∂ ∂
= −

∂ ∂
  

becomes 
V Lj I
z

∂
= − ω

∂
. 

 

 
∇  NABLA, DEL OR GRAD OPERATOR 

Compare the ∇ operation to taking the time derivative.  
Where ∂/∂t means to take the derivative with respect 
to time and introduces a s-1 component to the units of 
the result, the ∇ operation means to take the 
derivative with respect to distance (in 3 dimensions) 
and introduces a m-1 component to the units of the 
result.  ∇ terms may be called space derivatives and 
an equation which contains the ∇ operator may be 
called a vector differential equation.  In other words  
∇A is how fast A changes as you move through 
space. 
in rectangular 
coordinates: 

ˆ ˆ ˆA A Ax y z
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
A  

in cylindrical 
coordinates: 

1ˆˆ ˆA A Ar z
r r z

∂ ∂ ∂
∇ = + φ +

∂ ∂φ ∂
A  

in spherical 
coordinates: 

1 1ˆ ˆˆ
sin

A A Ar
r r r

∂ ∂ ∂
∇ = + θ + φ

∂ ∂θ θ ∂φ
A  

 

∇   GRADIENT 

∇Φ = −E
v

 
"The gradient of the vector Φ"  or 
"del Φ" is equal to the negative of 
the electric field vector. 

∇Φ is a vector giving the direction and magnitude of the 
maximum spatial variation of the scalar function Φ at a point 
in space. 

ˆ ˆ ˆ
x y z

∂ Φ ∂ Φ ∂ Φ
∇Φ = + +

∂ ∂ ∂
x y z

v
 

 
∇⋅   DIVERGENCE 

∇⋅  is also a vector operator, combining the "del" or 
"grad" operator with the dot product operator and is 
read as "the divergence of".  In this form of Gauss' 
law, where D is a density per unit area, with the 
operators applied, ∇⋅D becomes a density per unit 
volume. 

div yx zDD D
x y z

∂∂ ∂
= ∇ ⋅ = + + = ρ

∂ ∂ ∂
D D  

D = electric flux density vector  D = εE  [C/m2] 
ρ = source charge density [C/m3] 
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∇2   THE LAPLACIAN 
∇2 is a combination of the divergence and del 
operations, i.e.  div(grad Φ) = ∇⋅∇ Φ = ∇2 Φ.  It is read 
as "the LaPlacian of" or "del squared". 

2 2 2
2

2 2 2x y z
∂ Φ ∂ Φ ∂ Φ

∇ = + +
∂ ∂ ∂

Φ  

Φ = electric potential  [V] 

 
GRAPHING TERMINOLOGY 
 With x being the horizontal axis and y the vertical, we have 

a graph of y versus x or y as a function of x.  The x-axis 
represents the independent variable and the y-axis 
represents the dependent variable, so that when a graph 
is used to illustrate data, the data of regular interval (often 
this is time) is plotted on the x-axis and the corresponding 
data is dependent on those values and is plotted on the y-
axis.  

 

HYPERBOLIC FUNCTIONS 
( )sin sinhj jθ = θ  

( )cos coshj jθ = θ  

( )tan tanhj jθ = θ  

 
TAYLOR SERIES 

11 1
2

x x+ ≈ + ,  1x �  

2 4 6
2

1 1
1

x x x
x

≈ + + + +
−

L ,  1x <  

1 1
1

x
x

≈
±

m ,  1x �  
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ELECTROMAGNETIC SPECTRUM 

FREQUENCY WAVELENGTH 
(free space) 

DESIGNATION APPLICATIONS 

< 3 Hz > 100 Mm  Geophysical prospecting 
3-30 Hz 10-100 Mm ELF Detection of buried metals 
30-300 Hz 1-10 Mm SLF Power transmission, submarine communications 
0.3-3 kHz 0.1-1 Mm ULF Telephone, audio 
3-30 kHz 10-100 km VLF Navigation, positioning, naval communications 
30-300 kHz 1-10 km LF Navigation, radio beacons 
0.3-3 MHz 0.1-1 km MF AM broadcasting 
3-30 MHz 10-100 m HF Short wave, citizens' band 
30-300 MHz 

54-72 
76-88 
88-108 
174-216 

1-10 m VHF TV, FM, police 
TV channels 2-4 
TV channels 5-6 
FM radio 
TV channels 7-13 

0.3-3 GHz 
470-890 MHz 
915 MHz 
800-2500 MHz 
1-2 
2.45 
2-4 

10-100 cm UHF 
 
 
"money band" 

 

Radar, TV, GPS, cellular phone 
TV channels 14-83 
Microwave ovens (Europe) 
PCS cellular phones, analog at 900 MHz, GSM/CDMA at 1900 
L-band, GPS system 
Microwave ovens (U.S.) 
S-band 

3-30 GHz 
4-8 
8-12 
12-18 
18-27 

1-10 cm SHF Radar, satellite communications 
C-band 
X-band  (Police radar at 11 GHz) 
Ku-band  (dBS Primestar at 14 GHz) 
K-band  (Police radar at 22 GHz) 

30-300 GHz 
27-40 
40-60 
60-80 
80-100 

0.1-1 cm EHF Radar, remote sensing 
Ka-band  (Police radar at 35 GHz) 
U-band 
V-band 
W-band 

0.3-1 THz 0.3-1 mm Millimeter Astromony, meteorology 
1012-1014 Hz 3-300 µm Infrared Heating, night vision, optical communications 

3.95×1014-
7.7×1014 Hz 
 

390-760 nm 
625-760 
600-625 
577-600 
492-577 
455-492 
390-455 

Visible light Vision, astronomy, optical communications 
Red 
Orange 
Yellow 
Green 
Blue 
Violet 

1015-1018 Hz 0.3-300 nm Ultraviolet Sterilization 
1016-1021 Hz  X-rays Medical diagnosis 
1018-1022 Hz  γ-rays Cancer therapy, astrophysics 

> 1022 Hz  Cosmic rays Astrophysics 
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GLOSSARY 
anisotropic materials  materials in which the electric 

polarization vector is not in the same direction as the electric 
field.  The values of ε, µ, and σ are dependent on the field 
direction.  Examples are crystal structures and ionized 
gases. 

complex permittivity ε  The imaginary part accounts for heat 
loss in the medium due to damping of the vibrating dipole 
moments. 

dielectric  An insulator.  When the presence of an applied field 
displaces electrons within a molecule away from their 
average positions, the material is said to be polarized.  
When we consider the polarizations of insulators, we refer to 
them as dielectrics. 

empirical  A result based on observation or experience rather 
than theory, e.g. empirical data, empirical formulas.  Capable 
of being verified or disproved by observation or experiment, 
e.g. empirical laws. 

evanescent wave  A wave for which β=0.  α will be negative.  
That is, γ is purely real.  The wave has infinite wavelength—
there is no oscillation. 

isotropic materials  materials in which the electric polarization 
vector is in the same direction as the electric field.  The 
material responds in the same way for all directions of an 
electric field vector, i.e. the values of ε, µ, and σ are constant 
regardless of the field direction. 

linear materials  materials which respond proportionally to 
increased field levels.  The value of µ is not related to H and 
the value of ε is not related to E.  Glass is linear, iron is non-
linear. 

overdamped system  in the case of a transmission line, this 
means that when the source voltage is applied the line 
voltage rises to the final voltage without exceeding it. 

time variable materials  materials whose response to an 
electric field changes over time, e.g. when a sound wave 
passes through them. 

transverse  plane perpendicular, e.g. the x-y plane is 
transverse to z. 

underdamped system  in the case of a transmission line, this 
means that after the source voltage is applied the line 
voltage periodically exceeds the final voltage. 

wave number k  The phase constant for the uniform plane 
wave.  k may be considered a constant of the medium at a 
particular frequency. 

 


