C Progranmm ng
M SC 2456

page 1 of 25

| NDEX

-, 6 byte, 8 pass, 24 conditional, 6
1,7 carriage, 6 passing, 16, 22 logical, 6
=7 case, 13 prototype, 16 pointer, 10, 15, 23
#7 ceil(), 12 returning, 16 pow(), 12
#define, 7, 13 char, 3 rules, 2 preprocessor, 10
#include, 7 character, 8 gets(), 5 printf(), 5
%, 6 code, 13 global, 10 printing, 14
&, 6,23 comment, 7 glossary, 8 pseudocode, 10
&&,6 constant, 11 header, 9, 16 rand(), 12
&=,6 conversion, 8 identifier, 10 random, 11
* 23 conversioncontrol, 8 if(),5 random(), 12
*=6 cos(), 12 ifdef, 13 randomize(), 12
I*,7 cosh(), 12 include, 7 reference, 16, 18
2 data, 9 increment, 6, 10 remainder, 11
\, 6 declaration, 2, 9, 19, 23 indirectionoperator, 10 return, 16
|,6 decrement, 6, 9 initialize, 10 rewind(), 5
Il, 6 default, 13 int, 3,9 rules, 1
|= 6 define, 7 integer, 9, 10 sample, 13
|b, 6 definition, 9 interpreter, 10 scanf(), 5, 23
~ 6 div, 12 keywords, 3 shift, 6
6 divide, 6 labs(), 12 short, 3,9
++, 6 double, 3,9 Idexp(), 12 sin(), 12
+=,6 driver, 9 Idiv(), 12 sinh(), 12
<<, 6 enum, 3 literal, 10 sizeof(), 3
<<=, 6 equal log(), 12 source, 11
=, conditional, 7 log10(), 12 sort(), 12
-=, escape, 6, 9 long, 3,9 srand(), 12
==, exit(), 4 machine, 10 string
>> 6 exp(), 12 magic, 10 pass, 18
>>= 6 fabs(), 12 main(), 2, 5 strings, 2
0,6 fclose, 4 math, 12 struct, 19, 20
abs(), 12 fclose(), 14 math.h, 12 using, 25
acos(), 12 fflush(), 4 mnemonic, 10 structure, 11, 21
address, 8, 23 foets(), 4, 14 modf(), 12 subscript, 11
algorithm, 8 field, 9 modular, 10 switch(), 13
and file, 22 module, 10 symbolic, 11

conditional, 6 files, 14 modulus, 6 tab, 6

logical, 6 float, 3 multiply, 6 tan(), 12
argument, 8 floating, 9 n, 6 tanh(), 12
array, 21, 24 floor(), 12 negation trig, 12
asin(), 12 fmod(), 12 logical, 6 unary, 11
assignment, 8, 23 fopen(), 4, 14 new, 6 unsigned, 4, 9
atan(), 12 for(), 13 nnn, 6 variable
atomic, 8 format, 8, 9 not rules, 2
auto, 3 fprintf(), 5, 14 conditional, 7 void, 4, 16
backspace, 6 frexp(), 12 null, 6 while(), 13, 14
binary, 8 fscanf(), 4 object, 10 word, 11
bit, 8 fseek(), 5 offset, 10
braces, 1 function, 4, 15, 16 operator, 6
bresk, 3 math, 12 or
braces { } determine the beginning and end of a function body
called function In the parenthesis of the function header line (where it appears at the end of the

program) each variable is declared with its variable type. The default is

integer. i.e. int max_int (float X,

float y) p209 The passed

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

case
comments

declarations

function

function name

identifiers

main()
semicolon ;
strings

arithmetic operations

variable

page 2 of 25
variables need not have the same name as their counterparts in the main
function. A function header never ends with a semicolon.

Ciscase-sensitive
comments may not be nested

Declaration statements may go before function main() for global variables,
within main() where they apply only to that function, or within called functions.

char ch = 'a'; A character variable ch is declared and
assigned an initial valueof a. A
character variable holds only one
character unlessit is an array as below.

char test[5] = "abcd"; Leave room for the end of string marker
/ 0. Thisarray cannot be modified using
assignment statements but can be
modified using st r cpy() .. p345

char *test = "abcd"; This array CAN be modified using
assignments and can hold a greater
number of charactersthan it receives on
declaration. strcpy() canbeused
provided that it does not exceed the
number of places occupied by the
existing string. p345

FILE *ny_file; Declares a pointer to afile (which will be
opened later). p427

int distance; Declares di st ance as an integer

int distance = 17; variable. In the second example, the

variableis declared as well asinitialized
with avalue. Itisagood practiceto do
this.

I ong bi gnum Declare bi gnumas along integer.

cannot be akeyword (p.15), conforms to identifier rules, aways followed by
parenthesis () , should be mnemonic, traditionally in lowercase but not
required.

composed of up to 31 letters, digits, and underscores, beginning with aletter or
underscore, no blank spaces

each program must have one and only one main function

follows each statement

are enclosed in double quotes

If both operands are integers, the result is an integer. 1f one or more operands
isafloating point or double precision value, the result is a double precision
value. Thiswill be on the test. When dividing two integers, the fractional result
isdropped,i.e.9/5 = 1.

must begin with aletter or underscore, may contain only letters, underscores, or
digits, no blanks, commas or special symbols, maximum length 31 characters.
Additionally, the instructor prefers they not begin with an underscore and not
be more than about 15 charactersin length.

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

aut o
br eak
case

char

const
conti nue
def aul t
do

doubl e

el se

enum

extern

fl oat

for
goto
if

i nt

| ong

register
return

short

si gned

si zeof ()

static
struct
switch
t ypedef

uni on

page 3 of 25

KEYWORDS

instructs the program to exit the current loop

represents the character data type typically using 1 byte of storage for values
from -128 to +127, may be used in a declaration statement.

represents the double precision floating point data type typically using 8 bytes
of storage for values up to 1.797693e+308.

a specifier which creates an enumerated data type, which is a user-defined list
of valuesthat is given its own data type name, p.440. The statement consists of
the specifier followed by an optional name for the data type and a listing of
acceptable values for the datatype, i.e. enum time {am pni};

represents the floating point data type typically using 4 bytes of storage for
values up to 3.37e+38, may be used in a declaration statement.

represents the integer data type typically using 2 bytes of storage for values up
to 32,767, may be used in a declaration statement

an integer type typicaly using 4 bytes of storage for values up to
2,147,483,647, may be used in a declaration statement. May also be combined
with unsi gned.

an integer type typicaly using 2 bytes of storage for values up to 32,767, may
be used in a declaration statement.

an operator that returns the number of bytes of the object or data type included
in the parentheses, i.e. si zeof (nunil) si zeof (1 ong int)

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

unsi gned
voi d
vol atile
whi | e

page 4 of 25

an integer type typicaly using 2 bytes of storage for positive only integers 0 to
65,535. used in adeclaration statement. May also be combined with | ong.

Thereisno value. When placed before the function name, it means no value
will be returned; when placed within the parenthesis it means no value will be
given to the function.

FUNCTI ONS

The type of datato be returned by the functionis given first,i.e. i nt max_i nt () . Thedefault typeis
integer. voi d meansno valueisreturned. Parameters and input data type go inside the parenthesis, i.e.

max_int(float x,

exit()

fcl ose()

ff1ush(stdin);

fgets()

fopen()

fscanf ()

float y) orusevoi d if there are no parameters.

terminates the program and flushes output file buffers, closes open files, deletes
temporary files. The parentheses contain a status value returned to the calling
process, a 0 means anormal exit, other numbers indicate that an error occurred.

closes afile. Thisfunction breaks the link between the file's external and internal
names, releasing the internal file pointer name, which can then be used for another
file. p413 Example:

fcl ose(data);

The argument should always be a pointer; quotes are not used because dat a isa
pointer and not a string.

clearsthe input butter. Use thisline before reading character data with the scanf()
function.

Read n-1 characters from the file and store the charactersin the string name.
Requires <stdio.h> Example:

fgets(stringnane, n, filenane);

st ri ngnare isthe address of a character array. Ordinarily n will be the same
number that is specified in the variable declaration, which must also take into
account the end of string marker \ 0. The function reads characters until stringname
isfilled or an end of line character \n is encountered. Although this character is not
supposed to end up in the string, it seemed to happen to be in program 4. A similar
functionf get c(fi | enane) readsasingle character from afile. p416

opensafile. Inthe example
data = fopen("prog4.dat", "r");

dat a isthe pointer to the externa file, pr og4. dat isthefilenameand r means
to read the file. If the file does not exist, NULL isreturned. Other argumentsare w
for writing to anew file, a for append, r + for reading and writing, w+ for
erasing an existing file and opening a blank file for reading and writing, and a+ for
reading, writing, and appending to afile. p408

reads datafrom afile. "Example:

fscanf(MyFile, "%", &Var);
where MyFi | e isthefileto beread from % isthedatatypeand &Var isthe
address of the variable in which it isto be stored. fscanf() stops reading when it

encounters whitespace, a newline character, or adatatype mismatch. Multiple
arguments may be specified. p416 It hasagreat deal of additional functionality

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

fseek()

printf()

fprintf()

gets()

if0)

mai n()

printf()

rewi nd()

scanf ()

page 5 of 25
and can be used to smply move forward in afile. see Nancy's book.

fseek(filename, 1L, SEEK CUR);
Move ahead 1 character. The"L" isacast conversion of "1" to long integer. p425
sends data to the primary display device (the screen). Example:
printf("The nunbers are % and %d.\n", intl, int2);

Arguments for any format specifiers appear in the same order called at the end of
the statement.

formats data and sends it to the printer. Example:
fprintf(FilePtr,"\tHello World\n");
Fi | ePt r isthe pointer to atemporary printer file, \ t istab, and\ n isnewline.

reads a string entered at the keyboard until encountering a carriage return (new line
character), then terminates the string with an end of string\ o character, discarding
the new line\ n character. p330 Actually in program 4 | had to remove the end of
line character from a string obtained using the f get s() function. For example:

gets(Var);
will put the string entered at the keyboard into the character array Var .
i f(statement)

assignment statement or function;
assignment statement or function;

}
el se
{
do thisinstead;
this too;
}

If "statement" is true then the following command(s) will be executed. The braces
are only required if there are multiple commands to execute. The el se commands
(which are optional) are only executed if "statement" is false.

each program must have one and only one main function, tells the compiler where
program execution isto begin, calls program modules and determines the sequence
of events

formats data and sends it to the standard system display device, such as the screen.
Example:

printf("The total of 6.0 and 15.0 is %.1f.", 6.0 +
15.0);

Thisresultsin the display of "The total of 6.0 and 15.0is 21.0" without the quotes.
The statement contains two arguments separated by commas. The"%t. 1f " isa
conversion control sequence or format specifier, more specifically a control string
or control specifier. Thistellsthe computer to insert the result of the next argument
here and gives data type and field width information aswell. Multiple format
specifiers may appear and are associated with multiple arguments in the order
presented.

move to the start of the datafile. The only argument isthe pointer to the datafile,
i.e. renind(in_file); p425

retrieves data from the keyboard, for example scanf ("% ", &nunil); this
statement stops the program and waits for keyboard input. The user typesin a
number and hits enter. the scanf () function retrievesthisvalue and storesit in
variable numl asafloating point decimal. The & symbol in front of the variable

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

|
\ "
\\
\'b
\ f
\n
\ nnn
\r
\ 't
\0

OPERATOR

%
&
|

<<
>>

++

name nuni

page 6 of 25

indicates the addressof numl and isrequired inthe scanf ()

function except when reading a string into a character array. In this case, the array
name (without brackets) is the pointer name so no & (ampersand) isrequired. The
function will retrieve characters until it encounters a space or newline. (p330).

ESCAPE SEQUENCES

single quote
double quote
backslash character
backspace

next page

start anew line

treat nnn as an octal number

carriage return

move to next tab setting

null character marking the end of a string

OPERATORS

DEFINITION

modulus

COMMENTS

the remainder after division

logical bit-by-bit AND
logical bit-by-bit OR
logical bit-by-bit negation

shift left

shift right

increment by one eg.
decrement by one eg.
increment by eg.
decrement by eg.
multiply by eg.
divideby eg.
OR with and update eg.
AND with and update eg.
shift left _ times eg.
shift right __ times eg.

AND, conditional
OR, conditional

a ++; meansa=a+l;

a --; meansa=a-1;

a += 2; meansa=a+2;

a -= 2; meansa=a- 2;

a *= 2; meansa=a*2,

a /= 2; meansa=al 2;

a | = 2; meansa=a| 2;

a & 2; meansa=a&2;
a <<= 2; meansa=a<<2,
a >>= 2; meansa=a>>2;

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf

11/29/2001

page 7 of 25

! NOT, conditional
== equal to, conditional

= not equal to, conditional

/*
#
#def i ne

#i ncl ude<st di 0. h>
#i ncl ude<stdl i b. h>

OTHER COVIVANDS

start of a comment, ends with */
signals an instruction to the preprocessor

apreprocessor statement to equate the symbolic constant in the statement
with the information or datafollowingit, i.e. #defi ne SALESTAX 0. 05
means give the constant SALESTAX the value of 0.05. Wherever
SALESTAX appearsin the program, the value of 0.05 will automatically be
substituted. Define statements are not followed by a semicolon and they may
be found in include files.

preprocessor statements to include header files. These two are common to
most programs.

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

address

algorithm

argument

assignment operator, p84

assignment statement

atomic datavalue

binary operator

bit
byte

character code

character type

coding

compiled language

conversion character

conversion control

page 8 of 25

GLOSSARY

the value identifying a memory location or the location of the first byte of
memory in avariable. The symbol & isthe address operator and returns the

address of avariable when placed in front of the variable name, i.e. adr =
&num,;

step-by-step description of how to perform a computation

data passed to a function by placing within the parenthesis. Multiple arguments
are separated by commas.

= assign the value on the right to the variable on the left

+= add the value on the right to the value on the left and store in the variable
on the left

- = subtract the value on the right from the value on the left and store in the
variable on the left

*= multiply the value on the right by the value on the left and store in the
variable on the left

/ = divide the value on the left by the value on the right and storein the
variable on the left

% multiply the value on the left by the percentage on the right and store in the
variable on the left

see also increment operator, decrement operator

tells the computer to store avalue into avariable, i.e. nunil =
result = nunl + nung;

62; or

avauethat is considered a complete entity by itself and is not decomposable
into a smaller data type that is supported by the language. For example,
although an integer can be decomposed into individua digits, C does not have
anumerical digit datatype so an integer is an atomic data type.

requires two operands, i.e. multiplication, division, addition, subtraction,
remainder

the smallest storage unit of a computer, storingaOor al

agroup of bits. Thisusually consists of 8 bits, resulting in 256 possible
combinations.

the patterns of Os and 1s used to represent letters, single digits, and other single
characters, i.e. the ASCII code.

letters of the alphabet, digits, and special symbols. A single character constant
isany one letter, digit, or special symbol enclosed by single quotes like " or
‘A,

converting an algorithm into a computer program

aprogramming language in which al commands are translated before any are
executed

the last character(s) in a conversion control sequence or format specifier.

Conversion charactersare: d integer,| d longinteger, u unsigned integer, f
floating point, | f double precision, 0 octal, x hexadecimal, e exponent,
g exponent or float—whichever is shorter, ¢ character, p address, s string

always begins with a % symbol and ends with a conversion character, i.e. %d

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

sequence or format
specifier

counting statement
data types

data types, integer

declaration statement

decrement operator

definition statement

double precision

driver function

escape sequence

field width specifier

floating point

format modifier

formula

function header line

page 9 of 25
meansits an integer. Additional formatting characters can be placed between
the % symbol and the conversion character, i.e. %. 2f

COUNT = COUNT + 1 seeincrement operator

The 4 basic data types are integer, floating point, double precision, and
character.

long integer, short integer, and unsigned integer. Long integer allows the value
to surpass the maximum 32,767 limit of a 2-byte integer. Short integer may or
may not conserve memory space. Unsigned integers are positive integers only
which allows values of 0 to 65,536 in a 2-byte memory area. Declaration
statementsare: | ong int varl; short int var2; unsigned

i nt var 3. Theword"i nt " may not be required in the statement. The
actua size of these integers varies with the computer but may be determined
with the si zeof () command. Shortint may bethe samesizeasint. When
the date is converted to an integer number representing the number of days
since the turn of the century, aregular integer does not work for dates past
1987.

appears immediately after the opening brace of afunction and ends with a
semicolon. used to name and define the data type that can be stored in each
variable,i.e.int total; float firstnum double secnum
char ch; Multiplevariables of the same type can be assigned in one
declaration statement, i.e. char chl, ch2, ch3; The space after each
commais not required. A declaration statement can also be used to store an
initia valueinto thevariable,i.e. int nunml = 15; char chl =

a'; A declaration statement for pointer to an integer could look like: i nt
* .
g_ptr;

- - COUNT meansthesameas COUNT = COUNT - 1

a declaration statement that defines how much memory is needed for data
storage,i.e.int total; float firstnum double secnum
char ch; areall definition statements as well as being declaration
Statements

negative or positive numbers having adecimal point. Has greater storage
allocation than floating point, to 1.797693e+308 using 8 bytes of memory.

tells the other functions the sequence in which they are to operate, describes
mai n()

in C language, a backslash followed by a character. The backdashisthe
escape which means to escape from the normal interpretation of the character
which follows

Defines the width of thefield, i.e. 10. 3 meansthat afloating point number
will be displayed with atotal of 10 digits including spaces and decimal point
and will have 3 places following the decimal.

negative or positive numbers having adecimal point. Has smaller storage
allocation than double precision, to 3.383+38 using 4 bytes of memory.

may be used in a conversion control sequence or format specifier immediately
after the % symbol, i.e. % +10d means left-justify (-) the display and include a
+ symbol if the valueis positive (+). (By default, the - symbol is displayed for
negative numbers anyway.) The # format modifier forces octal and
hexadecimal numbersto be printed with aleading 0 and Ox respectively.

an agorithm written in mathematical equations

the first line of afunction, tells 1) what type of data, if any, isreturned from the
function, 2) the name of the function, 3) what type of data, if any, is sent into

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

global variable

header file

identifier

increment operator

indirection operator

initialize

integer value

interpreted language

interpreter
literal data

machine language
magic number
mnemonic

modular program

module

number code

object program
offset

pointer variable

preprocessor command

pseudocode

page 10 of 25
the function

avariable declared before the main function, allowing it to be used in any
function in the program.

afile containing information to be placed at the top of a program using the
#i ncl ude command

a combination of letters, digits and underscores used as function names,
variables or to name other elements of the C language

++COUNT; meansthesameas COUNT = COUNT + 1;
k = ++n; incrementn by 1 and assign the valueto k
k = n++; assignn tok and then increment n by 1

Theindirection operator * when placed in front of avariable namein the
declaration statement indicates that it is a pointer variable, see pointer variable.

assign avalueto avariable for the first time.

Also called integer constant in C, is any positive or negative number without a
decimal point. The maximum size of an integer varies by computer and
depends on the storage area allotted. 1 byte: -128 to 127, 2 bytes: -32768 to
32767, 4 bytes: -2147483648 to 2147483647. Usethe si zeof operator to
determine the number of bytes allocated for each integer value.

aprogramming language in which each statement in the source program is
trandated individually and executed immediately

the program which translates a source program into machine code

any datain a program that explicitly identifiesitself, such as constants 2 and
3.1416.

consists of 1sand Os
aliteral value that appears many timesin a program
designed as amemory aid

aprogram whose structure consists of interrelated segments arranged in a
logical and easily understandable order

a subprogram within a main program which carries out usually one or two
functions

the patterns of Os and 1s used to represent numbers, i.e. two's complement for
example.

the machine language version of a source program

anumber or variable referring to the number of addresses beyond the starting
address of an array that a particular addressisfound. For examplein the
expression *(g_ptr + 3) thenumber 3isthe offset and the expression
points to the third address past the initial array element. p307,8

avariable used to store the address of another variable, i.e. chr _poi nt =
&ch A pointer variableis declared according to the type of the variable to
which it points, i.e. char *chr_poi nt; Theindirection operator *
denotesthat chr _poi nt isapointer variable.

performs some action before the compiler trandates the source program into
machine code, begins with the # sign

an agorithm written in plain English

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

random access
remainder
source program

structure

subscript notation

symbolic name,
symbolic constant,
named constant

unary operator

word

page 11 of 25
Any character can be read without first reading everything beforeit.
an arithmetic operation using the operator "%",i.e.9 % 4 = 1.
the computer program before compiling

1) the program's overall construction
2) the form used to carry out individual tasks within a program

If num ptr isdeclared asapointer variable, the expression * (num ptr +
|) canalsobewritten in subscript notationasnum ptr[1].

an identifier (all caps by convention) that is assigned a permanent value or
meaning using a#define statement, i.e. #def i ne SALESTAX 0. 05 No
semicolon follows in this example because the preprocessor would substitute
0. 05; wherever SALESTAX was found if that were the case.

requires only one operand, i.e. make negative "-"

one or more bytes grouped, i.e. the IBM computer has two bytes grouped into
one 16-bit word having one address. This has advantages of grouping at the
expense of cost and complexity.

Tom Penick

tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 12 of 25

MATH FUNCTI ONS

#i ncl ude <mat h. h>

int abs (int n) -Getabsolutevaue of aninteger.

doubl e acos(doubl e x) - Compute arc cosine of x.

doubl e asi n(doubl e x) - Compute arc sine of x.

doubl e at an(doubl e x) - Compute arc tangent of x.

doubl e atan2(doubl e y, doubl e x) - Computearc tangent of y/x.

doubl e ceil (doubl e x) - Get smallest integral value that exceeds x.

doubl e cos(doubl e x) - Compute cosine of anglein radians.

doubl e cosh(doubl e x) - Compute the hyperbolic cosine of x.

div_t div(int nunber, int denon) - Divideoneinteger by another.

doubl e exp(doubl e x) - Compute exponential of x.

doubl e fabs(doubl e x) - Compute absolute value of x.

doubl e fl oor (doubl e x) - Getlargest integral value less than x.

doubl e frod(doubl e x, doubl e y) - Dividex by y with integral quotient and return remainder.
doubl e frexp(double x, int *expptr) - Breaksdown x into mantissa and exponent of no.
| abs(l ong n) - Find absolute v alue of long integer n.

doubl e | dexp(doubl e x, int exp) - Reconstructsx out of mantissaand exponent of two.
Idiv_t Idiv(long nunber, |ong denom - Divideonelonginteger by another.

doubl e | og(doubl e x) - Compute log(x).

doubl e 1 0g10(doubl e x) - Computelog to the base 10 of x.

doubl e nodf (doubl e x, double *intptr) -Breaksx into fractional and integer parts.
doubl e pow(doubl e x, doubl e y) - Computex raised to the power y.

i nt rand(voi d) - Get arandom integer between 0 and 32.

i nt random(int max_num) - Get arandom integer between 0 and max_num.

voi d randomi ze(voi d) - Set arandom seed for the random number generator.

doubl e si n(doubl e x) - Compute sine of angle in radians.

doubl e si nh(doubl e x) - Compute the hyperbolic sine of x.

doubl e sqgrt (doubl e x) - Compute the square root of x.

voi d srand(unsi gned seed) - Set anew seed for the random number generator (rand).
doubl e tan(doubl e x) - Compute tangent of angle in radians.

doubl e tanh(doubl e x) - Compute the hyperbolic tangent of x.

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 13 of 25

SAMPLE CODE

for Statement.

int ii; /* a counter * [
for(ii=0;ii<10;ii++) /* Do it 10 tines */
{ [* { for nore than one */
<st at enent >; /* sone statenment * [
<st at enent >; /* sone statenment * [
}

while Statement.

int ii = O; /* a counter */
whi | e(ii<10) [* While this is true */
[* { for nore than one */
<st at enent >; /* sone statenment */
<st at enent >; /* sone statenment */
ii++; /* increment ii */

}

switch Statement.

swi tch(var) /* some expression */

/* */

case 1: * if var = 1 * [

<st at enent >; /* execute statenments */

<st at enent >; [* if var = 1 * [

br eak; /* exit switch stmmt * [

case 2: [* if var = 2 * [

<st at enent >; /* execute statenments */

<st at enent >; [* if var = 2 * [

br eak; /* exit switch stmmt * [

def aul t: /* otherw se * [
*

<st at enment >; execute statenents */

}

Thedef aul t statement isoptional. If br eak instructions are not used, program execution will continue
into subsequent case areas even if they do not test true.

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 14 of 25

ifdef Statement.
/* Uncomment the appropriate statenent to nake quick changes in
* code definitions */
#defi ne nethodl /* one way */
/I #defi ne nmet hod2 /* anot her way */
i fdef methodl /* I f methodl is */
extern int SoneThing; /* uncomment ed above */
#define TH S 10 /* */
#defi ne THAT 20 /* */
#endi f
i fdef method2 /* If method2 is */
extern int AnyThing; /* uncomment ed above */
#define THHS 5 /* */
#defi ne THAT 7 /* */
#endi f
Basic Printing.
FILE *Print; /* declare the pointer to a file where
data will be sent for printing. */
i f((Print=fopen("lptl","w"'))==NULL) /* These 5 |ines */
[* are used in all */
printf("\nPRINTER I S NOT READY!!!"); /* progranms to open */
exit(0); /* and check the */
[* printer output. */
fprintf(Print,"\t THOMAS PENI CK\ n"); [* print sonething */
fprintf(Print,"\f"); /* advance the printer to the next page */
fclose(Print); /* close the print file */
Access a data file.
FI LE *Dat a; /* declare the pointer to the data file */
Data = fopen("prog4.dat", "r"); /* open the data file */
i f (Data==NULL) /* check the data file */
{
fprintf(Print,"\nThe file prog4.dat cannot be opened.\n");
/* error nessage */
exit(1); /* stop the programdue to an error (1) */
fcl ose(Data); /* close the data file */

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 15 of 25
Read and print from a datafile.

whil e(fscanf(Data,"%d", & D Num!=EOF) /* until the end of the file */
/* also read an integer. */
[* "Data" points to the file */

{
f get s(Nanel, 25, Dat a) ; /* read string into "Nanel" */
strcopy(Nane2, Nanel); /[* call a function to renove
/* the end of line char. */
fprintf(Print,"\t%l. % 25s\t% d\n", Li ne_Num Nane2, | D_Num;
[* print a line of data */
}

Programmer -defined called function to remove the end of line character from a string (char acter
array). Thisissimilar tothe example on p332.

void strcopy(char [], char []); /* declare the subroutine */
/* before main function */

voi d strcopy(char String2[], char Stringl[]) /* begin called funct. */
{

int Cnt =0
while (Stringl[Cnt] !'="\n")
String2[Cnt] = Stringl[Cnt];
++Cnt ; /* increment the counter */
}
String2[Cnt] = "\0'; /* terminate the string */
return;

}

Load a pointer with the address of the first element of an array.

i nt nuns[100]; /* create an array */
int *nptr; /* create a pointer */
nptr = &nuns[0] ; /* load the address */
nptr = nuns; /* anot her way, same as above*/

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 16 of 25
Types of Functions in C Progranmm ng

The following examples illustrate various methods of passing values to functions. Except for the function
"strcopy()", these are not working functions (code has been omitted).

Subtopics

A FUNCTION WHICH PASSES NO VALUE AND RETURNS NO VALUE

A FUNCTION WHICH PASSES TWO FLOATS AND RETURNS A FLOAT

A FUNCTION WHICH PASSES AN INTEGER ARRAY AND RETURNS AN INTEGER
A FUNCTION WHICH PASSES VARIABLES BY REFERENCE USING ADDRESSES
A FUNCTION WHICH PASSES A STRING BY REFERENCE

A FUNCTION WHICH PASSES A STRUCTURE BY NAME

A FUNCTION WHICH PASSES A STRUCTURE BY REFERENCE USING A POINTER
A FUNCTION WHICH PASSES A STRUCTURE ARRAY

A FUNCTION WHICH PASSES A FILE NAME

A FUNCTION WHICH PASSES NO VALUE AND RETURNS NO VALUE

A function may be declared (function prototype) globally or within the calling function:

FUNCTION PROTOTYPE void PrintHead(void);
FUNCTION CALL Print Head() ;

FUNCTION HEADER void PrintHead(voi d)
RETURN STATEMENT return;

A FUNCTION WHICH PASSES TWO FLOATS AND RETURNS A FLOAT
A function can return at most one value:

FUNCTION PROTOTYPE float find_nmax(float, float);
FUNCTION CALL maxmum = find_max(firstnum secnum;

The variables used in the function need not and should not have the same names as those

passed to the function:
FUNCTION HEADER float find_nmax(float numl, float nunR)
{
DECLARE A VARIABLE float Result;
RETURN STATEMENT return(Result);
}

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 17 of 25
A FUNCTION WHICH PASSES AN INTEGER ARRAY AND RETURNS AN INTEGER

An alternate method would be to pass by reference using a pointer. In this example the last
argument is an integer telling the function how many elements are in the array:

FUNCTION PROTOTYPE int find_max(int vals[], int);
FUNCTION CALL bi ggun = find_max(nuns, 5);

The variables used in the function need not and should not have the same names as those

passed to the function:
FUNCTION HEADER int find_max(int nuns[], int HowMvany)
{
DECLARE A VARIABLE int Result;
RETURN STATEMENT return(Result);
}

A FUNCTION WHICH PASSES VARIABLES BY REFERENCE USING ADDRESSES

FUNCTION PROTOTYPE voi d sortnun({doubl e*, doubl e*);

FUNCTION CALL sort nun(&Fi rst Num &SecNunj ;

FUNCTION HEADER voi d sortnun({doubl e *Numl, double *Nun®)
RETURN STATEMENT return;

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 18 of 25

A FUNCTION WHICH PASSES A STRING BY REFERENCE

There is no way that | can find of returning a string from a function. However, if the address
of the string is passed, then the function can operate on the string. This example is aworking
function which takes the string referenced by the second argument, removes the carriage
return from the end of it and "returns’ it by assignment to the first argument. (Thisis used for
astring which has been retrieved from atext fileusing the f get s() function):

FUNCTION PROTOTYPE

void strcopy(char [], char []);

The calling function must have declared two appropriate character arrays.

FUNCTION CALL
FUNCTION HEADER

DECLARE A VARIABLE

char Nanmel[25];

char Name2{25];

strcopy(Nane2, Nanel) ;

void strcopy(char Str2[], char Stri1[])

{

int Cnt = 0;

while (Stri[Cnt] !'="\n")

{
Str2[Cnt] = Strl[Cnt];
++Cnt ;

}

Nothing is returned, but "Str2" is the new version of the original "Namel" and is available in
the calling function as "Name2".

RETURN STATEMENT

return;

}

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 19 of 25
A FUNCTION WHICH PASSES A STRUCTURE BY NAME

Here "class list" is a structure type declared globally:

STRUCTURE DECLARATION struct class_|ist

{
char Name[31];

I ong 1 D_Num
char d ass[9]
b
The function prototype may be declared globally or within the caling function. Here
"class list" is the type of structure from the structure prototype (declared globally), not the
specific structure itself:
FUNCTION PROTOTYPE void PrintReport(struct class_list);

A single structure of type "class list" is created in the calling function (if not globally) and
named "load":

STRUCTURE IS CREATED struct class_|list |oad;
The structure "load" is passed to the function:
FUNCTION CALL Pri nt Report (1 oad);

The structure prototype name is again used in the function header:

FUNCTION HEADER void PrintReport(struct class_list N)
REFERENCES TO ELEMENTS N. Nane

N. I D_Num

N. Cl ass
RETURN STATEMENT return;

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 20 of 25
A FUNCTION WHICH PASSES A STRUCTURE BY REFERENCE USING A POINTER

Here "class list" is a structure type declared globally as before:

STRUCTURE DECLARATION struct class_|ist

{
char Name[31];

I ong 1 D_Num
char d ass[9]
b
The function prototype may be declared globally or within the caling function. Here
"class list" is the type of structure from the structure prototype (declared globally), not the
specific structureitself. The* indicates that a pointer to the structure will be passed:

FUNCTION PROTOTYPE void PrintReport(struct class_list *);

A single structure of type "class list" is created in the calling function (if not globally) and
named "load":

STRUCTURE IS CREATED struct class_|list |oad;
The structure is assigned to a pointer.

A POINTER IS DECLARED struct class list *Ptr;
A POINTER IS ASSIGNED Ptr = &l oad;

The pointer to the structure is passed to the function.
FUNCTION CALL Print Report (Ptr);
A corresponding pointer "P" is declared in the function header:

FUNCTION HEADER void PrintReport(struct class_list *P)
REFERENCES TO ELEMENTS P- >Nane

P->1 D_Num

P->C ass
RETURN STATEMENT return;

}

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 21 of 25
A FUNCTION WHICH PASSES A STRUCTURE ARRAY

Here"c list" isastructure type declared globally as before:

STRUCTURE DECLARATION struct c_list

{
char Name[31];

I ong 1 D_Num
char d ass[9]
b

The function prototype may be declared globally or within the calling function. Here "c_list"
is the type of structure from the structure prototype (declared globally), not the specific
structure itself. The * indicates that a pointer to the structure will be passed:

FUNCTION PROTOTYPE void PrintReport(struct c_list *);

A pointer to astructure of type"c_list" is created.

A POINTER IS DECLARED struct c list *Ptr;

A structure array of type "c list" is created in the calling function and assigned to pointer
"Ptr" and memory isalocated. "Elements’ is the number of lementsin the array:

STRUCTURE ARRAY IS CREATED
Ptr = (struct c_list *) malloc(El enents * sizeof(struct c_list));

The pointer to the structure is passed to the function.
FUNCTION CALL Print Report (Ptr);
A corresponding pointer "P" is declared in the function header:

FUNCTION HEADER void PrintReport(struct c_list *P)

{

REFERENCES TO ELEMENTS P[i]. Name
P[i].1D_Num
P[i].d ass

RETURN STATEMENT return;

}

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 22 of 25
A FUNCTION WHICH PASSES A FILE NAME

A file pointer is declared in the calling function:;

POINTER DECLARATION FI LE *Dat a;
FILE NAME ASSIGNMENT Data = fopen("class.dat", "r+");

The argument is a pointer to afile:

FUNCTION PROTOTYPE voi d ReadFil e(FI LE *)
FUNCTION CALL ReadFi | e(Dat a) ;

A new file pointer is declared in the function header:

FUNCTION HEADER voi d ReadFil e(FILE *F)
RETURN STATEMENT return;

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 23 of 25

USI NG PO NTERS I N C

A pointer is avariable that contains an address.

How to Interpret & and * Symbols
Symbol Read as...
& the pointer to the variable
. the value held in the variable pointed to by
(™) cast the pointer that follows into a pointer of type
. apointer of type _ (thisisused in afunction prototype)

DECLARATION STATEMENT

A pointer variable is declared using the data type of the variable to whose address it points. Thisis
so that the computer will know how many storage locations to access when it uses the variable
pointed to. So if we have an integer variable numand we want a pointer variable addr to storeits
address, then the declaration statement for the pointer would be:

int *addr;
This statement means, “| am declaring a pointer called addr of type integer.” The address of any

integer variable can be stored in the pointer variable addr.

If we add 1 to addr, then it will point to the next integer. In other words, because the pointer has
been declared an integer type (16 bits), incrementing the pointer causes the address to shift by two
bytesin this case.

ASSIGNMENT STATEMENT

addr = &num

The pointer addr now contains the address of the variable numand * addr refers to the value
held in the variable num Obtaining a value in this way is known as indirect addressing and the
symbol * isthe indirection operator.

READING THE VALUE OF THE VARIABLE POINTED TO

val ue = *addr;

The variable val ue now contains the value stored at address addr .

SCANF()

Thescanf () function requires the use of addresses of variables.

syntax: scanf (" control string(s)", &variable(s)) ;
i.e.: scanf ("% %", &numl, &nunk);

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 24 of 25
PASSING ADDRESSES TO FUNCTIONS

To pass addresses to a function (referred to as pass by reference):

voi d sortnum (double *, double *);
/* function prototype */

sortnun(& irstnum &secnun); [/* the function call */

sort nun{doubl e *numl, doubl e *nunR)
/* the function header */
/* declaring pointers */
/* to receive passed */
/* addresses */

When the values which are pointed to are used by the function, the indirection operator is used, i.e.
*nunil and * nun?. The function may change these values even though they are not global .

return; /* this function would */
/* not "return" a */
/* val ue */

POINTERS IN ARRAYS
If we have an array, gr ades[] , we can store the address of gr ades[0] in apointer:

&gr ades|[0] ;

gptr
or

gptr = grades; /* equival ent to above */

Then * gpt r would refer to the value stored in gr ades[0] . We can refer to the values stored in
other parts of the array by using offsets. *(gptr + 1) refers to the value stored in
grades[1] and could also be written gpt r[1] even though gpt r was not declared as an
array. (page 309) This value could also be referred to by * (grades + 1) and refers to the
second value in the array regardless of the number of storage locations required by the variable
type. A distinction between the latter and reference by pointer is that the address stored in a
pointer can be changed. gpt r isapointer and gr ades isapointer constant. Both of these point
to the address of gr ades[0] .

gpt r could be made equivalent to &gr ades|[1] by the statement:

gptr++; /* increnent the address */
[* in gptr */
or
gptr ++; [this pernmits first */
[* utilizing the val ue */
/* in a statenent (not */
/* included here). To */
/* increment before */
/* using you could use */
[* *++gptr; */
or
gptr = &grades[1]; /* assignnment statenent */

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

page 25 of 25
POINTERS IN STRUCTURES

Prototype for structure Student Records:

struct Student Record [* Structure for holding */
{ /* student's record. */
char Nanme[31]; /* Student name */
I ong |1 D_Num /* Student | D nunber */
char O ass[9]; /* Student's class */
}; /* Yes, a sem col on. */

A structure has been declared above, but no memory has been alocated. Thisis only a template
for a structure. Structures of this type may now be created using the template name,
StudentRecord.

struct Student Record SR1, SR2; /* Two structures */

The above statement creates two structures of the type StudentRecord. This statement could have
been combined with the structure declaration as follows:

struct Student Record [* Structure for holding */
{ /* student's record. */
char Nanme[31]; /* Student name */
I ong |1 D_Num /* Student | D nunber */
char O ass[9]; [* Student's class */
} SR1, SR2; /* Two structures. */

In this case, the template name StudentRecord is unnecessary if no additional structures of this
type are to be created. It can be omitted.

Arrays of structures may be created:
struct StudentRecord StuRec[10]; /* Array of 10 structs */

Structure pointer declaration:;

struct Student Record *Recs;

The above statement creates a pointer called Recs that can point to a structure of type
StudentRecord.

Create a single structure that is pointed to by the pointer Recs:

Recs=(struct StudentRecord *)mall oc(sizeof (struct SR1));

Or create a structure array:
Recs=(struct StudentRecord *)mal | oc(HowMany * sizeof (struct SR1));

Single structure members may be addressed in this way:

Recs. | D_Num

Structure array members must be addressed using - >:

Recs[i]->ID_Num

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

