MOVING COIL SPEAKER

Model for the moving coil loudspeaker.

Faraday's law: $V = \phi u$

Lorentz force: $F = \phi I$

u = velocity of the voice coil [m/s]

I = electrical current [A]

 R_0 = electrical resistance of the voice coil $[\Omega]$

 L_0 = electrical inductance of the voice coil [H]

s =spring stiffness due to flexible cone suspension material [N/m]

 R_m = mechanical resistance, a small frictional force [(N· s)/m or kg/s]

 R_M = effective electrical resistance due to the mechanical resistance of the system [Ω]

 C_M = effective electrical capacitance due to the mechanical stiffness [F]

 L_M = effective electrical inductance due to the mechanical inertia [H]

V = voltage applied to the voice coil [V]

 Z_E = electrical impedance due to electrical components [Ω]

 Z_A = effective electrical impedance due to mechanical air loading [Ω]

 Z_M = effective electrical impedance due to the mechanical effects of spring stiffness, mass, and (mechanical) resistance [Ω]

F =force on the voice coil [V]

 $\phi = Bl$ coupling coefficient [N/A]

B = magnetic field [Tesla (an SI unit)]

l = length of wire in the voice coil [m]