MOVING COIL SPEAKER ## Model for the moving coil loudspeaker. Faraday's law: $V = \phi u$ Lorentz force: $F = \phi I$ u = velocity of the voice coil [m/s] I = electrical current [A] R_0 = electrical resistance of the voice coil $[\Omega]$ L_0 = electrical inductance of the voice coil [H] s =spring stiffness due to flexible cone suspension material [N/m] R_m = mechanical resistance, a small frictional force [(N· s)/m or kg/s] R_M = effective electrical resistance due to the mechanical resistance of the system [Ω] C_M = effective electrical capacitance due to the mechanical stiffness [F] L_M = effective electrical inductance due to the mechanical inertia [H] V = voltage applied to the voice coil [V] Z_E = electrical impedance due to electrical components [Ω] Z_A = effective electrical impedance due to mechanical air loading [Ω] Z_M = effective electrical impedance due to the mechanical effects of spring stiffness, mass, and (mechanical) resistance [Ω] F =force on the voice coil [V] $\phi = Bl$ coupling coefficient [N/A] B = magnetic field [Tesla (an SI unit)] l = length of wire in the voice coil [m]