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THE SCHRÖDINGER WAVE EQUATION
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This is the Scrödinger Wave Equation in three dimensions.  The following concerns a one-
dimensional problem where the equation is a function of x and t.  Refer to pp. 38,39 in Solid State
Electronic Devices.

THE PROBLEM
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THE APPROACH
We are going to solve the equation by breaking it into two equations using the technique of separation
of variables.

THE SOLUTION
Let ( )tx,Ψ  be represented by the product

( ) ( )tx φψ :
( ) ( ) ( ) ( ) ( ) ( ) ( )

t
t

x
j

txxVt
x

x
m ∂

φ∂
ψ−=φψ+φ

∂
ψ∂

−
hh

2

22

2

Now divide the equation by ( ) ( )tx φψ .
Now the variable x appears only on the left
and the variable t only on the right.
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Since x and t are independent variables, this equation is valid
only when each side equals a constant, says our instructor.
We will call the constant E.  We lose the partial derivative
symbol too.
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[Eq. 1]

( )
( )

E
dt

td
tj

=
φ

φ
−

1h
[Eq. 2]

Multiplying [Eq. 1] by ( )x
m
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Collecting terms on the left side: ( ) ( )[ ] ( ) 0
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THE SOLUTION OF [EQ. 4]

[Eq. 4] is a linear first order differential equation. ( ) ( ) 0=φ+
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We multiply the equation by the integrating factor  
∫ dt

jE

e h ,

which is h/jEte :
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Discard the center term; this happens somehow by integrating and taking the
derivative.

( )
0/ =

φ hjEte
dt

td

Integrate with respect to t. ( )
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On the right side we get a constant, or initial condition φ0. ( ) 0
/ φ=φ hjEtet

Solve for φ(t) to get: ( ) h/
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THE ANSWER
The instructor say that we put φ0 into the total
normalization constant and assume ψn(x) is known
corresponding to a certain En, and the overall wave
function is:
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ABOUT THE VARIABLES
E = the separation constant; corresponds to the

energy of the particle when particular
solutions are obtained, such that a wave
function ψn corresponds to a particle energy
En.

V(x) = potential, usually resulting from an
electrostatic or magnetic field. [V]

h  = Planck's constant divided by 2π [J – s]
t = time [s]
m = quantum number [integer]
∇ = the nabla, del, or grad operator; not a

variable


