THE SCHRÖDINGER WAVE EQUATION

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+\nabla \Psi=-\frac{\hbar}{j} \frac{\partial \Psi}{\partial t} \text { where } \nabla^{2} \Psi=\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}
$$

This is the Scrödinger Wave Equation in three dimensions. The following concerns a onedimensional problem where the equation is a function of x and t. Refer to pp. 38,39 in Solid State Electronic Devices.

THE PROBLEM

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)=-\frac{\hbar}{j} \frac{\partial \Psi(x, t)}{\partial t}
$$

THE APPROACH

We are going to solve the equation by breaking it into two equations using the technique of separation of variables.

THE SOLUTION

Let $\Psi(x, t)$ be represented by the product $\psi(x) \phi(t)$:

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}} \phi(t)+V(x) \psi(x) \phi(t)=-\frac{\hbar}{j} \psi(x) \frac{\partial \phi(t)}{\partial t}
$$

Now divide the equation by $\psi(x) \phi(t)$.
Now the variable x appears only on the left and the variable t only on the right.

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{\psi(x)} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x)=-\frac{\hbar}{j} \frac{1}{\phi(t)} \frac{\partial \phi(t)}{\partial t}
$$

Since x and t are independent variables, this equation is valid only when each side equals a constant, says our instructor. We will call the constant E. We lose the partial derivative symbol too.

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+V(x)=E \\
-\frac{\hbar}{j} \frac{1}{\phi(t)} \frac{d \phi(t)}{d t}=E \tag{Eq.2}
\end{array}
$$

Multiplying [Eq. 1] by $-\frac{2 m}{\hbar^{2}} \psi(x)$

$$
\begin{array}{r}
\frac{d^{2} \psi(x)}{d x^{2}}-\frac{2 m}{\hbar^{2}} V(x) \psi(x)=-\frac{2 m}{\hbar^{2}} E \psi(x) \\
\frac{d \phi(t)}{d t}=-\frac{j}{\hbar} E \phi(t)
\end{array}
$$ and [Eq. 2] by $-\frac{j}{\hbar} \phi(t)$ gives:

Collecting terms on the left side:

$$
\begin{align*}
\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2 m}{\hbar^{2}}[E-V(x)] \psi(x) & =0 \tag{Eq.3}\\
\frac{d \phi(t)}{d t}+\frac{j E}{\hbar} \phi(t) & =0 \tag{Eq.4}
\end{align*}
$$

THE SOLUTION OF [EQ. 4]

[Eq. 4] is a linear first order differential equation.

$$
\begin{equation*}
\frac{d \phi(t)}{d t}+\frac{j E}{\hbar} \phi(t)=0 \tag{Eq.4}
\end{equation*}
$$

We multiply the equation by the integrating factor $e^{\int \frac{j E}{\hbar} d t}, \quad \quad \frac{d \phi(t)}{d t} e^{j E t / \hbar}+\frac{j E}{\hbar} \phi(t) e^{j E t / \hbar}=0$
which is $e^{j E t / \hbar}:$

$$
\frac{d \phi(t)}{d t} e^{j E t / \hbar}=0
$$

Discard the center term; this happens somehow by integrating and taking the derivative.

$$
\int \frac{d \phi(t)}{d t} e^{j E t / \hbar} d t=\int 0 d t
$$

On the right side we get a constant, or initial condition ϕ_{0}.

$$
\phi(t) e^{j E t / \hbar}=\phi_{0}
$$

Solve for $\phi(t)$ to get:

$$
\phi(t)=\phi_{0} e^{-j E t / \hbar}
$$

THE ANSWER

The instructor say that we put ϕ_{0} into the total normalization constant and assume $\psi_{n}(x)$ is known corresponding to a certain E_{n}, and the overall wave

$$
\Psi_{n}(x, t)=\Psi_{n}(x) e^{-j E_{n} t / \hbar}
$$ function is:

ABOUT THE VARIABLES

$E=$ the separation constant; corresponds to the energy of the particle when particular solutions are obtained, such that a wave function ψ_{n} corresponds to a particle energy E_{n}.
$V(x)=$ potential, usually resulting from an electrostatic or magnetic field. [V]
$\hbar=$ Planck's constant divided by $2 \pi[J-s]$
$t=$ time [s]
$m=$ quantum number [integer]
$\nabla=$ the nabla, del, or grad operator; not a variable

