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PROBABILITY 

Mathematically, the probability of an outcome is equal 
to the number of possible positive outcomes divided 
by the total possible outcomes (size of the sample 
space).  

( ) number of possible positive outcomes
positive outcome

total number of possible outcomes
P =  

For example, if there are 5 balls in a box and 3 are green, 
the probability of choosing a green ball is 

( ) 3
choosing green ball

5
P =  

 

SINGLE COIN TOSS 

There is an equal probability that the outcome will be 
heads or tails. 

( ) ( ) 1
2

P H P T= =  

 

DOUBLE COIN TOSS 

There are four possible outcomes with equal 
probability. 

( ) ( ) ( ) ( ) 1
4

P HH P HT P TH P TT= = = =  

The probability of getting at least one heads would be the 
sum of the outcomes providing that result: 

( ) ( ) ( ) 3
4

P HH P HT P TH+ + =  

Alternatively, the probability of getting at least one heads 
could be thought of as one minus the probability of not 
getting at least one heads: 

( ) 3
1

4
P TT− =  

 

MULTIPLE COIN TOSS 

There are 2n possible outcomes to a multiple coin toss 
(when considering order of the results). 

The probability of getting at least one heads: 

( ) ( ) 1
getting at least one heads 2 1

2
n

n
P = −  

( ) 1
getting at least one heads 1

2n
P = −  

The probability of getting exactly 2 heads: 

}
( )

{ {

number ofnumber
possibleof possible
positions positions
of secondof first
headsheads

order of occurance inverse
is not a factor outcome

1 1getting exactly
two heads 2 2n

n n
P

−  = ⋅ 
 

678
 

The probability of getting exactly 3 heads: 

}
( )( )
{

number of number ofnumber
possible possibleof possible
positions positionspositions
of second of thirdof first
heads headsheads

number of ways to
order 3 items

1 2getting exactly
three heads 2 3

n n n
P

− −  = ⋅  ⋅ 

678 678

{
inverse
outcome

1
2n
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SET PROPERTIES 

Given two sets A and B A B
 

The union of two sets refers to that 
which is in set A or set B.  In terms 
of area, it is the sum of the areas 
minus the common area. 

A B∪
 

The intersection of two sets refers 
to that which is in set A and set B.  
In terms of area, it is the common 
area found in both A and B. 

∩A B
 

Two sets with no common 
elements are called disjoint.  More 
than two such sets are called 
mutually exclusive. 

A B
 

Theorems: ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  

 ( ) ( ) 1P A P A+ =  

A  means everything that is not in A 

 

INCLUSION-EXCLUSION PRINCIPLE 

Expanding on a theorem presented in the previous 
box, the probability that at least one event contained 
within a group of (possibly) intersecting sets of events 
occurs is the sum of the probabilities of each event 
minus the sum of the probabilities of all 2-way 
intersections, plus the sum of the probabilities of all 
3-way intersections, minus the sum of all 4-way 
intersections, etc.  

( ) ( ) ( )

( )

1 2
1 1

1

n

n i i j
i i j n

i j k
i j k n

P E E E P E P E E

P E E E

= ≤ < ≤

≤ < < ≤

∪ ∪ ∪ = − ∩

+ ∩ ∩ −

∑ ∑

∑

L

L
 

E = an event, in this case 

 

ΩΩ   SAMPLE SPACE 

The set of all possible outcomes.  (Means the same as 
probability space, I think.) For example, if a coin is 
tossed twice, the sample space is 

( ) ( ) ( ) ( ){ }H, H , H, T , T, H , T, TΩ =  

Note that the sample space is not a number; it is a collection 
or set of results.  This is frequently a source of confusion; 
the size of the sample space is a number, but the sample 
space itself is not a number. See Probability, p2. 

 

ΩΩ   INFINITE SAMPLE SPACE 

If a coin is tossed until it turns up heads, then the 
sample space for possible outcomes is 

{ }1, 2, 3,Ω = …  

 

PERMUTATION 

A permutation is a mapping of a finite set onto itself.  
For example if we have the set A = {a,b,c}, there are 3! 
possible permutations.  One of them is 

a b c

c b a
 
 
 

 

In other words, there are n! ways to arrange n objects.  
However, in the case of a cyclic permutation, there are 
(n-1)! ways to arrange n objects.  An example of a cyclic 
permutation would be the seating of n people at a round 
table. 

 

ORDERING/COMBINATIONS 1 

n different objects can be ordered in n! ways or 
permutations.  What about the case when some 
objects are identical?  For example, consider the 
letters in the name 

KONSTANTOPOULOS  

There are 15 letters in the word.  This includes 4 Os, 2 Ns, 2 
Ts, and 2 Ss.  How many 15-letter combinations can be 
formed with these letters given that some letters are 
identical? 

15!
number of words

4!2!2!2!
=  

 

ORDERING/COMBINATIONS 2 

In how many ways can n identical objects be arranged 
in m containers? 

( )
( ) ( )

1 1 !

1 1 ! !

n m n m

n n m n

+ − + − 
= − − × − 

 

A problem that appeared in the textbook was, how may 
ways can 6 identical letters be put in 3 mail boxes?  The 
answer is 28. 
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NORMAL RANDOM VARIABLE 

A normal random variable has a Gaussian density 
function centered at the expectation µ.  The figure 
below shows plots of the density functions of two 
normal random variables, centered at the common 
expectation of 0.  The plot having the sharper peak is 
for the special case of a standard normal random 
variable determined by and expectation of 0 and 
deviation of 1.  A normal random variable does not 
necessarily have an expectation of zero. 

 
Plot of the density functions for normal random 

variables with expectation µµ = 0 

 

Z   STANDARD NORMAL RANDOM 
VARIABLE   p.213 

A standard normal random variable has the 
parameters expectation µ = 0 and deviation σ = 1 (see 
Normal Density Function p.8).   

A normal (i.e. Gaussian density) random variable with 
parameters µ and σ can be written in terms of the 
standard normal random variable: 

X Z= σ + µ  

The process of changing a normal random variable to a 
standard normal random variable is called standardization.  
If X has a normal distribution with parameters µ and σ, then 
the standardized version of X is 

X
Z

− µ
=

σ
 

 

INDEPENDENT EVENTS   p.139 

Two events A and B are called independent if the 
outcome of one does not affect the outcome of the 
other.  Mathematically, (for a particular probability 
assignment/distribution) two events are independent if 
the probability of both events occurring is equal to the 
product of their probabilities. 

( ) ( ) ( )P A B P A P B∩ = ⋅  

For example, the outcome of the first roll of a die does not 
affect the second roll.  The independence of two events can 
be lost  if  the probabilities are not even, e.g. an unfair coin 
or die. 

Independence can also be expressed in terms of a 
conditional probability.  The probability of A given B is still A. 

( ) ( )|P A B P A=  

And if this is true, then it is also true that 

( ) ( )|P B A P B=  

 

UNEVEN PROBABILITY 

If we assign the probability n to the outcome of heads 
of an unfair coin, then 

( )HP n=  

( )T 1P n= −  

The probabilities of a double coin toss will be 

( )2
TT: 1 n−  

( )TH: 1n n−  

( )HT: 1n n−  

2HH: n  
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BINOMIAL COEFFICIENT   p.95 

On my TI-86 calculator, the command to do this is a nCr b.  
The nCr function is found under MATH/PROB. 

( )
!

! !
aa

b a b b
  =  − 

 

52
10

 
 
 

is read “52 choose 10” and stands for the 

number of combinations of 10 there are in a pool of 52 
units. 

Example Problem: what are the chances that there will be 4 
aces among 10 cards picked from a deck of 52?   

( ) ( )
( )

( ) ( )

( )

48! 4! 48! 4!48 4
48 6 !6! 4 4 !4!6 4 42!6! 0!4!

52! 52!52
10 52 10 !10! 42!10!

× ×× − −
= =

−

 

What this is saying is, “From 48 non-aces choose 6, then 
from 4 aces choose 4".  The product is the number of 
possible combinations of 10 that can contain 4 aces.  "Now 
divide this amount by all of the possible combinations of 10 
cards out of 52.”  Note that 0! = 1, so we have 

48!
48!42!10!42!6!

0.000776
52! 42!6!52!

42!10!

= = =  

 

MULTINOMIAL COEFFICIENT 

A binomial coefficient becomes multinomial when there is 
more than one type of object to choose or there is more than 
one location to choose objects from. 

Multiple object types: 

1 2 1 2

!
! ! !k k

nn
n n n n n n

  = 
 L L  

1 2 k

n
n n n

 
 
 L is read “n choose n1 of type 1, n2 of 

type 2 … and nk of type k”. 

Multiple object locations: 

For example, the number of ways we can arrange n 
objects in k boxes 

( )
( )

1 !1
! 1 !

n kn k
n n k

+ −+ −  =  − 
 

 

DISTRIBUTION FUNCTIONS 

DISTRIBUTION FUNCTION   p.19 
A distribution function is a function that describes 
probabilities as a function of outcomes.  That is, for 
every possible outcome, the distribution function gives 
the probability.  There are many different types of 
distributions functions; determining which one applies 
to a particular situation is often difficult so that in 
teaching this subject the topic may be avoided entirely 
with the advice offered that “you need to work a lot of 
problems in order to develop a sense of which 
distribution function to use.”   

When we take the derivative of a distribution function, 
the result is the density function (p8). 

 

m(ωω)   DISCRETE UNIFORM 
DISTRIBUTION FUNCTION   p.19,367 

The function assigning probabilities to a finite set of 
equally likely outcomes.  For example, the distribution 
function of a fair double coin toss is 

( ) ( ) ( ) ( ) 1
H, H H, T T, H T, T

4
m m m m= = = =  

The distribution function for the roll of a die is 

1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6im
 

=  
 

 

In general, the discrete uniform distribution function is 

( ) ( )1/ 1 , , 1, 2, ,

0, otherwise

l k x k k k l
P X x

 − + = + +
= = 



…
 

2
k l+

µ =  
( )( )2 2

12

l k l k− − +
σ =  

Generating Function: ( )
( )

( )( )
1

1 1

t ltk

t

e e
g t

l k e

+−
=

− + −
 

The distribution function may be an infinite series.  For 
example, if a coin is tossed until the first time heads 
turns up then the distribution function would look like: 

( )
0

1 1 1
2 4 8

m
∞

ω=

ω = + + +∑ L  

The sum of a distribution function is the sum of the 
probabilities and is equal to one.  See also Specific 
Generating Functions p19. 

µ = center of the density, average value, expected value 
σ2 = variance 
k = the lowest value in the sample space 
l = the highest value in the sample space 
g(t) = generating function 
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CUMULATIVE DISTRIBUTION FUNCTION   
p.61 

When X is a continuous real-valued random variable, 
the cumulative distribution function of X is 

( ) ( ) ( )
x

XF x P X x f t dt
−∞

= ≤ = ∫  

In other words, it is the probability of a positive result over a 
range of initial occurrences.  The cumulative distribution 
function is useful for finding the density function when a 
random variable that is a function of another random 
variable is involved.  The density function is the differential 
of the cumulative distribution function. 

X = random variable: the observation of an experimental 
outcome 

x = a variable representing a particular outcome 
f(x) = density function 
t = a dummy variable of integration 

 

FX(x)   CUMULATIVE NORMAL 
DISTRIBUTION FUNCTION 

The derivative of the normal density function (p.8).  
The function has parameters µ (expected value) and σ 
(standard deviation).  FX must be computed using 
numerical integration; there are tables of values for 
this function in Appendix A of the textbook. 

( ) ( )2 2/ 21

2

x x
XF x e du− −µ σ

−∞
=

σ π∫  

X = random variable for the number of occurrences in a 
given interval in time, area, length, etc. 

x = a particular outcome. 
µ = center of the density, average value, expected value 
σ = a positive value measuring the spread of the density, 

standard deviation 

 

F(x,y)   JOINT CUMULATIVE 
DISTRIBUTION FUNCTION   p.165 

The example below is for two random variables and 
may be extended for additional variables. 

( ) ( ), ,F x y P X x Y y= ≤ ≤  

 

BERNOULLI TRIALS PROCESS   
p.96,233,261 

A Bernoulli trials process is a sequence of n chance 
experiments such that 1) each experiment has two 
possible outcomes and 2) the probability p of success 
of each experiment is the same and is unaffected by 
the knowledge of previous experiments.  Examples of 
Bernoulli trials are flipping coins, opinion poles, and 
win/lose betting.  See also Negative Binomial 
Distribution p7. 

npµ =  ( )2 1np pσ = −  

p = probability of a successful outcome 

 

b(n,p,k)   BINOMIAL DISTRIBUTION 
FUNCTION   p.184 

A function assigning probabilities to a finite set of trials 
where there are two possible results per trial, not 
necessarily of equal probability.  The binomial 
distribution produces a bell-shaped curve.  When the 
parameter n is large and the parameter p is small, the 
Poisson Distribution is a useful approximation may be 
used instead.  The expectation is E(X) = np. 

( ) ( ), , k n knb n p k p qk
−=  where  

( )n
k  accounts for the ways the result can be ordered 

npµ =  
2 npqσ =  ( ) ( )nxx q peφ = +  

In the case of equal probabilities (p = 0.5), the function 
reduces to 

( ) ( ),0.5, 0.5nnb n k k=  

In the case of no successful outcomes (k = 0), the function 
reduces to 

( ), , 0 nb n p q=  

n = number of trials or selections 
p = probability of success 
q = probability of failure (1-p) 
k = number of successful outcomes 
µ = center of the density, average value, expected value 
σ2 = variance 
φ(x) = density function 

For example, if I can guess a person's age with a 70% 
success rate, what is the probability that out of ten people, I 
will guess the ages of exactly 8 people correctly? 

( ) ( ) 8 10 81010,.7,8 .7 .3 0.2338b −= =  

See also Specific Generating Functions p19. 
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MULTINOMIAL DISTRIBUTION 

This problem involves more than one type of random 
variable.  For example, a box contains M green balls 
and N red balls.  If we choose k balls, what is the 
probability that m are green and n are red? 

( )
( )( )

( )
of selecting ,  balls

M N
m k m

P m n
M N

k

−
=

+
 

This example was also used for hypergeometric distribution.  
See section 5.1. 

 

JOINT DISTRIBUTION FUNCTION   p.141 

A joint distribution function describes the probabilities 
of outcomes involving multiple random variables.  If 
the random variables are mutually independent then 
the joint distribution function is the product of the 
individual distribution functions of the random 
variables. 

( ) ( ) ( ), ,X Y X YF x y F x F y=  

 

GEOMETRIC DISTRIBUTION   p.184 

The geometric distribution applies to a series of dual-
outcome events (such as coin tosses) where p is the 
probability of success on any given event, q is the 
probability of failure, j is the event number, and T is a 
random variable that stands for the event that 
produces the first success.  The geometric distribution 
function has the memoryless property, p8.  See also 
Specific Generating Functions p19. 

( ) 1jP T j q p−= =  

1
p

µ =  
2

2

q
p

σ =  ( )
1

t

t

pe
g t

qe
=

−
 

T = the first successful event in the series 
j = the event number 1, 2, 3, etc. 
p = the probability that any one event is successful 
q = the probability that an event is not successful, 1 – p 
µ = center of the density, average value, expected value 
σ2 = variance 
g(t) = generating function 

 

NEGATIVE BINOMIAL DISTRIBUTION   
p.186 

Negative binomial distribution is a more general form 
of geometric distribution.  A new variable k is 
introduced representing the number of successful 
outcomes in x attempts.  For geometric distribution, 
k = 1. 

( ) ( )
1

, ,
1

k x kx
u x k p P X x p q

k
−− 

= = =  − 
 

This seems to describe the Bernoulli Trials Process which 
is a sequence of x chance experiments such that 1) each 
experiment has 2 possible outcomes and 2) the probability p 
of success is the same for each experiment and is not 
affected by knowledge of previous outcomes. 

X = random variable: the observation of an experimental 
outcome 

x = the number of attempts 
k = the number of successful outcomes 
p = the probability that any one event is successful 
q = the probability that an event is not successful, 1 - p 

 

POISSON DISTRIBUTION   p.187 

An approximation of a discrete probability distribution.  
The Poisson distribution is used as an approximation 
to the binomial distribution when the parameters n and 
p are large and small, respectively.  It is also used in 
situations where it may not be easy to interpret or 
measure the parameters n and p.  See also Specific 
Generating Functions p19. 

( )
!

k

P X k e
k

−λλ
= ≈  

µ = λ  
2σ = λ  ( ) ( )1te

g t e
λ −

=  

X = random variable: the observation of an experimental 
outcome 

λ = rate of occurrence, i.e. the number of positive outcomes 
expected over a given period.  This might be the 
product of the probability and the number of trials. 

k = number of positive outcomes 
µ = center of the density, average value, expected value 
σ2 = variance 
g(t) = generating function 
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EXPONENTIAL DISTRIBUTION   p.205 

The exponential distribution function is the integral of 
the exponential density function.  It represents the 
probability that an event will take place before time t.  
See Exponential Density Function on page 9. 

( ) 1 tF t e−λ= −  

Expectation: 
1

µ =
λ

 Variance: 2
2

1
σ =

λ
  

Deviation: 
1

σ =
λ

 Generating Fnct.: ( )g t
t

λ
=

λ −
 

λ = rate of occurrence, a parameter 
t = time, units to be specified 

 
DENSITY FUNCTIONS 

f(x)   DENSITY FUNCTION   p.59 

The density function is the derivative of the distribution 
function F(x) (see p5).  The integral of a density 
function over its entire interval is equal to one.  So by 
integrating a density function over a particular interval 
we determine the probability of an outcome falling 
within that interval.     

( ) ( )
b

a
P a X b f x dx≤ ≤ = ∫ ,   ( ) ( )f x F x′=  

The density function has no negative values.  A function that 
does not integrate to one may be normalized by dividing the 
function by its integral. 

 

fX(x)   NORMAL DENSITY FUNCTION   p.212 

If a large number of mutually independent random 
variables is considered, the normal density function is 
a close approximation.  The normal density function 
has parameters µ (expected value) and σ (standard 
deviation). 

 
Plot of the normal density function for µµ = 0 

( ) ( )2 2/ 21

2
x

Xf x e− −µ σ=
σ π

 

X = random variable: the observation of an experimental 
outcome 

x = a particular outcome. 
µ = center of the density, average value, expected value 
σ = the standard deviation, a positive value measuring the 

spread of the density 

 

φφ(x)   STANDARD NORMAL DENSITY 
FUNCTION   p.325 

The case of the normal density function with 
parameters µ = 0 (expected value) and σ = 1 (standard 
deviation). 

 
Plot of the standard normal density function 

( ) 2 / 21

2
xx e−φ =

π
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f(ωω)   CONTINUOUS UNIFORM DENSITY   
p.205 

Uniform density means that the probability of an 
outcome is equally weighted over the interval of 
consideration.  Continuous means that there are an 
infinite number of possible outcomes (as opposed to a 
discrete number).  Consider random values on the 
interval [a,b].  The (uniform) density function is     

( ) 1
f

b a
ω =

−
 

The mean value or expectation of an experiment having 
uniform density is then 

2
b a−

µ =  

 

f(x,y)   JOINT DENSITY FUNCTION   p.165 

Where X and Y are continuous random variables, the 
joint density function is     

( ) ( )2 ,
,

F x y
f x y

x y

∂
=

∂ ∂
,   where ( ) ( )f x F x′=  

The joint density function satisfies the following 
equation: 

( ) ( ), ,
t u

F x y f t u dt du
−∞ −∞

= ∫ ∫  

The joint density function can involve more than two 
variables and looks like 

( ) ( )1 2
1 2

1 2

, , ,
, , ,

n
n

n
n

F x x x
f x x x

x x x

∂
=

∂ ∂ ∂
LL L  

 

EXPONENTIAL DENSITY FUNCTION   p.205 

The exponential density has the parameter λ.  The 
function is often used to describe an expected lifetime 
where the parameter λ is the failure rate.   A higher 
value of λ means the failure is likely to be sooner.  The 
exponential density function has the memoryless 
property, p8.  The exponential density function will be 
on the exam.   

Example:  the probability that a light bulb burns out 
after t hours.  The total area under the curve is one; 
the area from the interval [a,b] is the probability of 
failure during that time. 

Exponential density function: ( ) tf t e−λ= λ  

ta b

(tf )
λ

 

Probability distribution function: ( ) 1 tF t e−λ= −  

(tF )

t

λ

 
e.g. for a random variable T 

( ) xP T x e−λ> =  ( ) 1 xP T x e−λ≤ = −  

Two exponential density 
functions are plotted at 
right with λ = 2 (high 
failure rate) and λ = 0.5 
(low failure rate).  Note 
that in each case at right 
the area under the curve 
is 1.  Both curves extend 
to infinity. 

1

2

λ =.5

λ=2

(tf )

t  

Expectation:  
1

µ =
λ

 

Variance:  2
2

1
σ =

λ
 Deviation:  

1
σ =

λ
 

Generating Function:  ( )g t
t

λ
=

λ −
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RELIABILITY   p.205 

The reliability is the probability that an event will take 
place after a given amount of time. 

( )reliability
T

f t dt
∞

= ∫  

For example, from the previous light bulb example, the 
probability that the bulb will last more than T hours is 
its reliability. 

reliability t T

T
e dt e

∞ −λ −λ= λ =∫  

λ = failure rate 
t = time [s] 

 

DE MORGAN’S LAWS 

Augustus De Morgan, British mathematician 1806-
1871. 

( ) ( )P A B P A B∪ = ∩  

( ) ( )P A B P A B∩ = ∪  

From this we can get 

( ) ( ) ( )
( ) ( ) ( ) ( )

A B C A B C A B C

A B A C A B A C

− ∩ = ∩ ∪ = ∩ ∩

= ∩ ∩ ∩ = − ∩ −
 

 

POKER PROBABILITIES 

The probability of being dealt a certain poker hand can 
be described as the product of the probability of 
getting one specific set of cards satisfying the 
requirement times the number of possible sets that 
would satisfy the requirement. 

For example, what is the probability of getting 3 of a kind? 

The probability of getting one specific hand satisfying this 
requirement is 

( )
91 1

384.77 10
52 2,598,960
5

−= = ×  

How many ways can you have 3 of a kind?  Consider that 
you have 3 2s and 2 non-2s that are not a pair.  Given that 
there are 4 suits, there are 4 ways to have 3 2s.  There are 
48 ways to have the 4th card and 44 ways to have the 
remaining card.  So the number of ways you can have 3 2s 
is 4×48×44=8448.  Multiply that by the 13 different 
numerical values in a deck of cards to get the total number 
of 5-card hands that contain 3 of a kind (109,824). So the 
probability is getting 3 of a kind is 

( )
1

4 48 44 13 0.04226
52
5

× × × × =  

 

P(A|B)   CONDITIONAL PROBABILITY 

P(A|B) reads, "the probability that event A will occur 
given that event B has occurred."  Since we know that 
B has occurred, the sample space now consists of 
only those outcomes in which B has occurred. 

( ) ( )
( )

|
P A B

P A B
P B

∩
=  

For example, let X be the outcome of rolling a die once.  Let 
A be the event {X = 6} and B be the event {X > 4}.  
P(A) = 1/6.  But if the die has been rolled and we are told 
that B has occurred, then we can only have a 5 or a 6 so  

( ) 1/ 6 1
|

1/3 2
P A B = =  
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f(x|E)   CONTINUOUS CONDITIONAL 
DENSITY FUNCTION   p.162 

The formula for continuous conditional density is 

( ) ( ) ( )/ , if 
|

0, if 
f x P E x E

f x E
x E

∈
=  ∉

 

For example, if we know that a spinner has stopped with its 
pointer in the upper half of a circle, 0 ≤ x ≤ ½, then the 
conditional density is 

( ) ( )1/ 1/2 , if 0 1 /2 2, if 0 1/ 2
|

0, if 1/ 2 10, if 1/ 2 1
x x

f x E
xx

≤ ≤ ≤ ≤= =  < << < 
 

f(x) = the density function for random variables Xi  
E = an event with positive probability that gives some 

evidence about which hypotheses are correct 
P(E) = the probability of event E occurring 

 

BAYES' THEOREM 

Bayes’ theorem is useful if we know P(A|B) and want 
to find P(B|A). 

( ) ( ) ( )
( )

|
|

P A B P B
P B A

P A
=  

This was not found in our textbook. 

 

BAYES' FORMULA   p.145 

This is a famous formula but we will rarely use it.  If 
the number of hypotheses is small, a simple tree 
measure calculation is done; if the number of 
hypotheses is large, then we use a computer. 

( ) ( ) ( )

( ) ( )
1

|
|

|

i i
i m

k k
k

P H P E H
P H E

P H P E H
=

=

∑
 

Bayes probabilities are used for medical diagnosis.  Given a 
set of test results and the probabilities for test outcomes, 
what are the probabilities that the patient has the disease? 

Hi = a set of pairwise disjoint events called hypotheses 
E = an event that gives some evidence about which 

hypotheses are correct 
P(Hi) = a set of probabilities called prior probabilities 

P(Hi|E) = conditional probabilities called posterior 
probabilities 

 

BAYES' INVERSE PROBLEM 

Bayes proposed to find the conditional probability that 
the unknown probability p lies between a and b, given 
m successes in n trials. 

( )
( )

( )
1

0

|  successes in  trials

1

1

b n mm

a

n mm

P a p b m n

x x dx

x x dx

−

−

≤ <

−
=

−

∫
∫

 

The computation of the integrals is too difficult for exact 
solution except for small values of j and n. 

 

PROBABILITY TREE 

Example: Urn I contains 2 black balls and three white 
balls, urn II contains 1 black ball and 1 white ball.  The 
following tree shows the probabilities involved in 
selecting an urn and random and selecting a ball from 
it. 

(start) 1/2

1/2
wht3/5

1/2

1/2
II

wht

blk

2/5
I

Urn Color
of ball

blk

3/10ω2

1/4

1/4

ω4

ω3

(  )ωp

1/5ω1

ω

 

The reverse tree gives the probabilities of the urn chosen 
given the color of the ball selected: 

Color
of ball

(start) 11/20

9/20

5/11

6/11
wht

II

I

4/9

5/9
blk

II

I

Urn

1/4

3/10

ω4

ω2

(  )ωp

1/5

1/4

ω1

ω3

ω
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B(αα,ββ,x)  BETA DENSITY FUNCTION   p.168 

A density function having positive parameters α and β.  
When both parameters are equal to one, the beta 
density is the uniform density.  When they are both 
greater than one, the function is bell-shaped; when 
they are both less than one, the function is U-shaped.  
A beta density function can be used to fit data that 
does not fit the Gaussian curve of a normal density 
function (p8). 

Beta Density Functions 

 

 

( ) ( ) ( ) 111
1 , if 0 1

, , ,

0, otherwise

x x x
B x B

β−α−
 

− ≤ ≤ α β = α β 



 

Beta function: ( ) ( )
1 11

0
, 1B x x dx

β−α−α β = −∫  

Given α and β, the probability of an event being successful 
is  

( )successP
α

=
α + β

 

If α and β are integers: 

( ) ( ) ( )
( )

1 ! 1 !
,

1 !
B

α − β −
α β =

α + β −
 

 

MEMORYLESS PROPERTY   p.206 

The memoryless property applies to the exponential 
density function and the geometric distribution 
function. 

( ) ( )( ) ( )|P T r s T r P T s> + > = >  

 
EXPECTATION 

E(X), µµ   EXPECTED VALUE OF DISCRETE 
RANDOM VARIABLES   p.225 

The expected value, also known as the mean and 
sometimes identified as µ, is the sum of the product of 
each possible outcome and its probability.  It is the 
center of mass in a distribution function.  If a large 
number of experiments are undertaken and the results 
are averaged, the value obtained should be close to 
the expected value.  The formula for the expected 
value is 

( ) ( )
x

E X xm x
∈Ω

µ = = ∑  

provided the sum converges.  For example, the expected 
value for the roll of a die is 
1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6)=3.5. 

If the probability p is the same for each of n possible 
outcomes, then the expected value is just 

( )E X npµ = =  

For a uniform density problem (p.9), the expected value is 

( )
2

b a
E X

−
µ = =  

X = numerically-valued discrete random variable: the 
observation of an experimental outcome 

m(x) = discrete distribution function 
Ω = the sample space 
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E(X), µµ   EXPECTED VALUE OF 
CONTINUOUS RANDOM VARIABLES   

p.268 

The expected value, also known as the mean and 
sometimes identified as µ, is the center of mass in a 
distribution function.  If a large number of experiments 
are undertaken and the results are averaged, the 
value obtained should be close to the expected value.  
The formula for the expected value is 

( ) ( )E X x f x dx
+∞

−∞
µ = = ∫  

provided that ( )x f x dx
+∞

−∞∫  is finite. 

Otherwise the expected value does not exist.  Note that the 
limits of integration may be reduced provided they include 
the sample space. 

For an exponential density  ( ) tf t e−λ= λ  (p.9), the 

expected value is 

1
µ =

λ
 

X = random variable: the observation of an experimental 
outcome 

f(x) = the density function for random variable X.  

 

E(φφ(X))   EXPECTATION OF A FUNCTION   
p.229 

If X and Y are two random variables and Y can be 
written as a function of X, then the expected value of Y 
can be computed using the distribution of X. 

( )( ) ( ) ( )
x

E X x m x
∈Ω

φ = φ∑  

again, with the provision that the sum converges. 

X = numerically-valued discrete random variable with 
sample space Ω 

φ(X) = a real-valued function of the random variable X with 
domain Ω 

Ω = the sample space 

 

PROPERTIES OF EXPECTATION   p.268, 394 

If X is a real valued random variable with E(X) = µ, 
then 

( ) ( )2 2E X V X= + µ  ( ) ( )n n
XE X x f x dx

+∞

−∞
= ∫  

If X and Y are two random variables with finite 
expected values, then 

( ) ( ) ( )E X Y E X E Y+ = +  

If X is a random variable and c is a constant 

( ) ( )E cX cE X=  

If X and Y are independent 

( ) ( ) ( )E X Y E X E Y⋅ =  

fX(x) = density function for the random variable X  

 

MARKOV INEQUALITY 
The probability that an outcome will be greater than or 
equal to some constant k is less than or equal to the 
expected value divided by that constant. 

( ) ( )E X
P X k

k
> ≤  

For example, if the expected height of a person is 5.5 
feet, then the Markov inequality states that the 
probability that a person is more than 11 feet tall is no 
more than ½.  This example demonstrates the 
looseness of the Markov inequality.  A more 
meaningful inequality is the Chebyshev inequality, 
which is a special case of Markov’s inequality (p. 16). 
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VARIANCE 

V(X), σσ2   VARIANCE OF DISCRETE 
RANDOM VARIABLES   p.257 

Variance is a measure of the deviation of an outcome 
from the expected value.  The variance is found by 
taking the difference between the expected value and 
each possible outcome, squaring that difference, 
multiplying that square by the probability of the 
outcome, and then summing these for each possible 
outcome.  The expected value is more useful as a 
prediction when the outcome is not likely to deviate 
too much from the expected value. 

( ) ( )( ) ( ) ( )2 22

x

V X E X x m xσ = = − µ = − µ∑  

For discrete random variables, the variance can be found by 
a couple of methods: 

Method 1:  ( ) ( )2

x

x m x− µ∑   Find the expected value µ.  

Subtract µ from each possible outcome.  Square each of 
these results.  Multiply each result by its probability and 
then sum all of these. 

For example, the variance of the roll of a die is 
[(1-3.5)2+(2-3.5)2+(3-3.5)2+(4-3.5)2+(5-3.5)2+(6-3.5)2](1/6)=35/12. 

Method 2:  ( )2 2E X − µ   Multiply the probability of each 

outcome by the square of the outcome.  Sum the results 
to get E(X2).  Find the expected value µ.  Subtract the 
square of µ from E(X2). 

For example, for the roll of a die, 

( )2 1 1 1 1 1 1 91
1 4 9 16 25 36

6 6 6 6 6 6 6
E X            = + + + + + =           

            , then 

( )
2

2 2 91 7 35
6 2 12

E X  − µ = − = 
  . 

The variance of a Bernoulli Trials process is npq. 

X = numerically-valued discrete random variable  
µ = the expected value of X, E(X)  
m(x) = discrete distribution function 

 

V(X), σσ2   VARIANCE OF CONTINUOUS 
RANDOM VARIABLES   p.271 

Variance is a measure of the deviation of an outcome 
from the expected value.  The expected value is more 
useful as a prediction when the outcome is not likely 
to deviate too much from the expected value. 

( ) ( )( ) ( ) ( )2 22 V X E X x f x dx
+∞

−∞
σ = = − µ = − µ∫  

Note that the limits of integration may be adjusted so 
long as they continue to include the sample space.  
If the integral fails to converge, the variance does 
not exist. 

The variance of a uniform distribution on [0,1] is 1/12. 

The variance of an exponential distribution is 1/λ2. 

X = random variable: the observation of an experimental 
outcome 

µ = the expected value of X, E(X)  

 

V(X), σσ2   PROPERTIES OF VARIANCE   
p.259 

( ) ( ) ( )V X Y V X V Y+ = +  

( ) ( )2V cX c V X=  ( ) ( )V X c V X+ =  

( ) ( )2 2V X E X= − µ  

 

D(X), σσ   STANDARD DEVIATION   p.257 

The standard deviation of X is the square root of the 
variance and is sometimes written σ. 

( ) ( ) ( )( )2
D X V X E X= = − µ  

The standard deviation of a Bernoulli Trials process is 

npqσ =  

X = random variable: the observation of an experimental 
outcome 

V(X) = the variance of  X 
µ = the expected value of X, E(X)  
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cov(X,Y)   COVARIANCE   p.280 

The book doesn’t go into detail about this.  
Covariance applies to both discrete and continuous 
random variables. 

( ) ( )( ) ( )( )
( ) ( ) ( )

cov ,X Y E X X Y Y

E XY X Y

 = − µ − µ 
= − µ µ

 

Property of covariance: 

( ) ( ) ( ) ( )2cov ,V X Y V X V Y X Y+ = + +  

X = random variable: the observation of an experimental 
outcome 

V(X) = the variance of  X 
µ = the expected value of X, E(X)  

 

ρρ(X,Y)   CORRELATION   p.281 

The book doesn’t go into detail about this either.  
Correlation applies to continuous random variables.  
Another text calls this the correlation coefficient and 
has a separate function for discrete random variables 
which it calls correlation. 

( ) ( )
( ) ( )

cov ,
,

X Y
X Y

V X V Y
ρ =  

X = random variable: the observation of an experimental 
outcome 

V(X) = the variance of  X 
µ = the expected value of X, E(X)  

 

CONVOLUTION 

SUM OF RANDOM VARIABLES   p.285, 291 

Discrete: Given Z = X + Y, where X and Y are 
independent discrete random variables with 
distribution functions m1(x) and m2(y), we can find the 
distribution function m3(z) of Z using convolution. 

3 1 2m m m= ∗  

( ) ( ) ( )3 1 2
k

m z m k m z k= ⋅ −∑  

Continuous:  Given Z = X + Y, where X and Y are 
independent continuous random variables with density 
functions f(x) and g(y), we can find the density function 
h(z) of Z using convolution.  Note that we are talking 
density functions here where it was distribution 
functions where discrete random variables were 
concerned.  Also note that the limits of integration may 
be adjusted for density functions that do not extend to 
infinity. 

( ) ( ) ( ) ( ) ( )

( ) ( )

f x g y h z f z y g y dy

g z x f x dx

+∞

−∞
+∞

−∞

∗ = = −

= −

∫
∫

 

For more about the sum of random variables, see Properties 
of Generating Functions p20.   

k = represents all of the integers for which the probabilities 
m1(k) and m2(z-k) exist.  (In cases where the probability 
doesn’t exist, the probability is zero.)   
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CONVOLUTION EXAMPLE 

Suppose the distribution functions m1(x) and m2(y) for 
the discrete random variables X and Y are  

( ) ( )1 2

0 1 2

1/8 3 /8 1/ 2
m x m x

 
= =  

 
 

Given Z = X + Y, we can find the distribution function 
m3(z) of Z using convolution. 

( ) ( ) ( ) ( ) ( )3 1 2 1 2
k

m z m x m y m k m z k= ∗ = ⋅ −∑  

For each possible value of k we have 

( ) 1 1 1
0

8 8 64
P z = = ⋅ = ,  k = 0 

( ) 1 3 3 1 3
1

8 8 8 8 32
P z = = ⋅ + ⋅ = ,  k = 0, 1 

( ) 1 1 3 3 1 1 17
2

8 2 8 8 2 8 64
P z = = ⋅ + ⋅ + ⋅ = ,  k = 0, 1, 2 

( ) 3 1 1 3 3
3

8 2 2 8 8
P z = = ⋅ + ⋅ = ,  k = 1, 2 

( ) 1 1 1
4

2 2 4
P z = = ⋅ = ,  k = 2 

Therefore 

( )3

0 1 2 3 4

1/ 64 3 / 32 17 / 64 3/8 1/ 4
m z

 
=  

 
 

 

LAW OF LARGE NUMBERS 

LAW OF LARGE NUMBERS   p.305 

Also called the Law of Averages, the law of large 
numbers is the first fundamental theorem of 
probability.  It is sometimes called the Weak Law of 
Large Numbers to distinguish it from the Strong Law 
of Large Numbers.  Probability may be viewed 1) 
intuitively, as the frequency at which an outcome 
occurs over the long run, and 2) mathematically, as a 
value of the distribution function for the random 
variable representing the experiment.  The law of 
large numbers theorem shows that these two 
interpretations are consistent. 

Let X1, X2, … Xn be an independent trials process with 
finite expected value µ = E(Xj) and finite variance 
σ2 = V(Xj).  Let Sn = X1 + X2 + … + Xn.  Then for any 
ε > 0, 

0nS
P

n
 

− µ ≥ ε → 
 

  as n → ∞ 

1nS
P

n
 

− µ < ε → 
 

  as n → ∞ 

Note that nS
n

 is the average of the individual outcomes, so 

nS
n

− µ  is the average deviation. 

In other words, if we conduct a lot of trials, the average 
result will be really close to the expected value. 

µ = the expected value of X, E(X)  
Sn = the sum of the random variables  
n = the number of possible outcomes or the number of 

random variables  
ε = any positive real number 

 

CHEBYSHEV INEQUALITY   p.305,316 

Let X be a discrete random variable with expected 
value µ = E(X), and let ε > 0 be any positive real 
number.  Then 

( ) ( )
2

V X
P X − µ ≥ ε ≤

ε
 

In other words, the probability that the outcome differs from 
the expected value by an amount greater than or equal to 
the value ε is not greater than the variance divided by the 
square of ε. 

X = random variable: the observation of an experimental 
outcome 

µ = the expected value of X, E(X)  
V(X) = the variance of  X 
ε = any positive real number 
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CENTRAL LIMIT THEOREM 

CENTRAL LIMIT THEOREM   p.325 

The second fundamental theorem of probability is the 
Central Limit Theorem.  This theorem says that if Sn is 
the sum of n mutually independent random variables, 
then the distribution function of Sn is well-approximated 
by a certain type of continuous function known as the 
normal density function, given by the formula 

( ) ( )2 2/ 21

2
x

Xf x e− −µ σ=
σ π

 see p8. 

σ = the deviation 
σ2 = the variance 
µ = the expected value of X, E(X)  

 

Sn*   STANDARDIZED SUM OF Sn   p.326 

The standardized sum always has the expected value 
0 and variance 1.  A sum of variables is standardized 
by subtracting the expected number of successes and 
dividing by its standard deviation. 

* n
n

S np
S

jpq

−
=  or 

*

2

n
n

S n
S

n

− µ
=

σ
 

 

CENTRAL LIMIT THEOREM FOR 
BINOMIAL DISTRIBUTIONS   p.328 

For the binomial distribution b(n,p,j) we have 

( ) ( )lim , ,
n

x npq b n p np x npq
→∞

φ = +  

φ(x) = standard normal density 
n = number of trials or selections 
p = probability of success 
q = probability of failure (1-p) 

 

CENTRAL LIMIT THEOREM FOR 
BERNOULLI TRIALS   p.330 

Where Sn is the number of successes in n Bernoulli 
trials (Bernoulli trials have 2 possible outcomes).  
Note that a* and b* are standardized values: 

*
a np

a
npq

−
=  *

b np
b

npq

−
=  

( ) ( )
*

*
lim

b

n an
P a S b x dx

→∞
≤ ≤ = φ∫  * 

where  ( ) 2 / 21

2
xx e−φ =

π
 

*For some reason, there is a big problem when performing 
this integration.  The table of values in the next box are for 
areas under the curve of φ(x) and may be used as a close 
approximation instead of performing the integration.  For 
example, for the integration from a* = -.2 to b* = .3, find the 
values of NA(z) for z = .2 and z = .3 in the table and add 
them together to get .1942.  Note that in this case the 
values were added because they represented areas on 
each side of the mean (center).  In the case where both 
values were on the same side of the mean (both have the 
same sign), a subtraction would have to take place to find 
the desired area.  That is because NA(z) is the area 
bounded by z and the mean.  Refer to the figure below. 

 
a = lower bound 
b = upper bound 
φ(x) = standard normal density function 
n = number of trials or selections 
p = probability of success 
q = probability of failure (1-p) 

 

TABLE OF VALUES FOR NA(0,z)   p.331 

The area under the normal density curve from 0 to z. 
z NA(z) z NA(z) z NA(z) z NA(z) 
.0 .0000 1.0 .3413 2.0 .4772 3.0 .4987 
.1 .0398 1.1 .3643 2.1 .4821 3.1 .4990 
.2 .0763 1.2 .3849 2.2 .4861 3.2 .4993 
.3 .1179 1.3 .4032 2.3 .4893 3.3 .4995 
.4 .1554 1.4 .4192 2.4 .4918 3.4 .4997 
.5 .1915 1.5 .4332 2.5 .4938 3.5 .4998 
.6 .2257 1.6 .4452 2.6 .4953 3.6 .4998 
.7 .2580 1.7 .4554 2.7 .4965 3.7 .4999 
.8 .2881 1.8 .4641 2.8 .4974 3.8 .4999 
.9 .3159 1.9 .4713 2.9 .4981 3.9 .5000 
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CENTRAL LIMIT THEOREM FOR THE 
SUM OF DISCRETE VARIABLES   p.343 

Where Sn is the sum of n discrete random variables: 

2 / 2

2

1
lim

2

b xn

an

S n
P a b e dx

n
−

→∞

 − µ
< < = 

πσ 
∫  

Note that 
*

2

n
n

S n
S

n

− µ
=

σ
.  See Standardized Sum p.17. 

Note also that a and b will have to be similarly 
standardized before applying the Table of Values for 
NA(z) that appears previous. 

a = lower bound 
b = upper bound 
n = number of trials or selections 

 

CENTRAL LIMIT THEOREM –  
GENERAL FORM   p.343 

Where Sn is the sum of n discrete random variables, 
and we assume that the deviation of this sum 
approaches infinity sn→∞: 

2 / 21
lim

2

b xn n

an
n

S m
P a b e dx

s
−

→∞

 −
< < = 

π 
∫  

mn = the mean of Sn 

sn = the deviation of Sn (square root of the variance) 
a = lower bound 
b = upper bound 
n = number of trials or selections 

 

APPROXIMATION THEOREM   p.342 

For n large: 

( ) ( ) ( )2

22

2 2

1

2

j n
j n

n

x
P S j e

n n

− µ
−

σ
φ

= =
σ π σ

∼  

where 
( )

2j

j n
x

n

− µ
=

σ
 

φ(x) = standard normal density 
n = number of trials or selections 
p = probability of success 
µ = the expected value of X, E(X)  
σ2 = the variance 

 

GENERATING FUNCTIONS 

g(t)   GENERATING FUNCTIONS   p.365 

A generating function g(t) produces the moments of a 
random variable X.  The first moment of g(t) is the 
mean; the variance may be determined from the first 
and second moments of g(t); and knowledge of all of 
the moments determines the distribution function 
completely.  So knowing the generating function 
provides more information than knowing the mean 
and variance only.  The moments of g(t) are its 
derivatives for t = 0.  So g(t) may be called the 
moment generating function for X. 

Discrete: ( ) ( ) ( )
1

jtxtX
j

j

g t E e e p x
∞

=

= = ∑  

Continuous: ( ) ( ) ( )tX tx
Xg t E e e f x dx

+∞

−∞
= = ∫  

Uniform Density: ( ) ( ) 1 btX tx

a
g t E e e dx

b a
= =

− ∫  

Note that the limits of integration are the range of the 
random variable X and are not necessarily infinite.  
Moments may also be calculated directly; see the next 
box. 

t = just some variable we need in order to have a generating 
function 

j = a counting variable (integer) for the dummy variable x 
x = dummy variable, I think 
fX(x) = density function for the random variable X  
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un   MOMENTS   p.366, 394 

The moments are the derivatives of the generating 
function evaluated at t = 0.  They describe the mean, 
variance, and distribution functions of a random 
variable.  A moment is determined by differentiating 
the generating function n times and then setting t = 0.  
The moments of a generating function give useful 
information; for example the first moment (n = 1) is the 
mean of the random variable for t = 0. 

( ) ( )
0

n
n

n n
t

d
E X g t

dt
=

µ = =  

Discrete:  ( ) ( )
1

k

n j j
j

x P X x
∞

=

µ = =∑  

Continuous:  ( ) ( )n n
n XE X x f x dx

+∞

−∞
µ = = ∫  

Mean:  1µ = µ  for t = 0 

Variance:  
2 2

2 1σ = µ − µ  for t = 0 

Sanity check:  0 1µ =  for t = 0 

t = just some variable we need in order to have a generating 
function 

k = a dummy counting variable (integer) for the moment 
calculation 

n = a counting variable (integer) for the moments, where 
n = 1 for the 1st moment, n = 2 for the 2nd moment, etc.  

 

g(t)   SPECIFIC GENERATING FUNCTIONS   
p.366 

Following are some distribution functions and their 
generating functions. 

Uniform distribution for 1≤ j ≤ n 

( ) 1
Xp j

n
=  ( )

( )
( )

1

1

t nt

t

e e
g t

n e

−
=

−
 

( )1 / 2nµ = +  ( )2 2 1 /12nσ = −  

Binomial distribution for 0≤ j ≤ n 

( ) ( ) j n j
X

np j p qj
−=  ( ) ( )ntg t pe q= +  

npµ =  ( )2 1np pσ = −  

Geometric distribution for all  j 

( ) 1j
Xp j q p−=  ( )

1

t

t

pe
g t

qe
=

−
 

1/ pµ =  2 2/q pσ =  

Poisson distribution with mean λ for all  j 

( )
!

j

X

e
p j

j

−λλ
=  ( ) ( )1te

g t e
λ −

=  

µ = λ  2σ = λ  

X = random variable: the observation of an experimental 
outcome 

t = just some variable we need in order to have a generating 
function 

j = a counting variable (integer) for the dummy variable x 
x = dummy variable, I think  

 

h(z)   ORDINARY GENERATING 
FUNCTION   p.370 

Here are the definitions of h(z), but basically to get the 
ordinary generating function, find g(t) and replace et by 
z, replace e2t by z2, etc., and leave everything else 
alone. 

( ) ( ) ( )
0

log
n

j

j

h z g z z p j
=

= = ∑  

z = just some variable we need in order to have a generating 
function 

j = a counting variable (integer) for the dummy variable z 
p(j) = coefficient of zj in h(z) 
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PROPERTIES OF GENERATING 
FUNCTIONS   p.371 

For Y X a= + : ( ) ( ) ( )( )t X atY
Yg t E e E e += =  

 ( ) ( )ta tX ta
Xe E e e g t= =  

For Y bX= : ( ) ( ) ( )tY tbX
Yg t E e E e= =  

 ( )Xg bt=  

For Y bX a= + : ( ) ( ) ( )( )t bX atY
Yg t E e E e += =  

 ( ) ( )ta tbX ta
Xe E e e g bt= =  

For *
X

X
− µ

=
σ

: ( ) /
*

t
x X

t
g t e g−µ σ  =  σ 

 

For Z X Y= + : ( ) ( ) ( )( )t X YtZ
Zg t E e E e += =  

 ( ) ( ) ( ) ( )tX tY
X YE e E e g t g t= =  

therefore ( ) ( ) ( )Z X Yg t g t g t=  

also ( ) ( ) ( )Z X Yh z h z h z=  

For 0t = : ( ) 1g t =  

 

p(j)   COEFFICIENTS OF THE ORDINARY 
GENERATING FUNCTION   p.370 

This is defined by Taylor’s formula: 

( )
( ) ( )0

!

jh
p j

j
=  

For example, if ( ) 21 1 1
4 2 4

h z z z= + +  then p has values 

of {1/4,1/2,1/4}. 

z = just some variable we need in order to have a generating 
function 

j = a counting variable (integer) for the dummy variable z 
h(z) = ordinary generating function 

 

MARKOV CHAINS 

STATES   p.405 

A Markov chain is composed of various states with 
defined paths of movement between states and 
associated probabilities of movement along these 
paths.  Permissible paths from one state to another 
are called steps. 

For example, let's say in the Land of Oz, there are never 2 
nice days in a row.  When they have a nice day, the 
following day will be rain or snow with equal probability.  
When they have snow or rain, there is a 50% chance that 
the following day will be the same and an equal chance of 
the other two possibilities.  So the states look like this. 

SNOW

4
1

RAIN

4
1

2
1 NICE

2
1

4
1

4
1

2
1

2
1

 
 

TRANSITION MATRIX   p.406 

A transition matrix or P-matrix is an arrangement of 
all of the probabilities of moving between states.  So 
pij is the probability of moving from state i to state j in 
one step. 

For the example above, the transition matrix is 

rain nice snow

rain 1/ 2 1/ 4 1/ 4

P nice 1/ 2 0 1/ 2

snow 1/ 4 1/ 4 1/ 2

 
 =  
 
 

 

So the values in the first row represent the probabilities of 
the weather following a rainy day, etc.  Notice that the rows 
each sum to 1 but the columns do not.  We can use the 
terminology p12 to mean the probability of having a nice day 
(2) after a rainy day (1).  We can read the result from 
element p12 of the matrix. 

 

MATRIX POWERS   p.406 

The above P-matrix raised to the second power gives 
us 2nd day probabilities, raised to a power of 3 gives 
us 3rd day probabilities, etc. 

2

.438 .188 .375

P .375 .250 .375

.375 .188 .438

 
 =  
 
 

 

We use the notation p12
(2) to mean the probability of having a 

nice day 2 days after a rainy day, e.g.  prain nice
(#days) = (.188). 
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ABSORBING CHAINS   p.415 

A Markov chain is absorbing if there are one or more 
states from which it is not possible to leave and it is 
possible to get to one of these states from any state in 
the chain. 

1 2 41 13

.4 .4

.6 .6  

A state that is not absorbing (states 2 and 3 in this example) 
is called a transient state.  The P-matrix for the example 
above is 

1 2 3 4

1

2

3

4

1 0 0 0

.6 0 .4 0
P

0 .6 0 .4

0 0 0 1

 
 
 =
 
  
 

 

 

CANONICAL FORM   p.417 

Using the P-matrix in the previous box as an example, 
reorder the rows and columns so that the transient 
states are listed first. 

2 3 1 4

2

3

1

4

0 .4 .6 0

.6 0 0 .4
P

0 0 1 0

0 0 0 1

 
 
 =
 
  
 

 

Note that we have submatrices defined as 

Q R
P

0 I

 
=   

 
  where 

Q = a matrix to be used later to find the fundamental matrix 
N 

R = a matrix to be used later to find the probability of 
absorption matrix B 

0 = a matrix of zeros 
I = an identity matrix 

Note that in this particular example, the 4 matrices are all 
the same size, but this is not always the case. 

 

FUNDAMENTAL MATRIX OF AN 
ABSORBING CHAIN   p.418 

The fundamental matrix of an absorbing chain, or the 
N-matrix, gives additional information.  The value nij of 
the N-matrix is the expected number of times the 
chain will be in state j given that it begins in state i. 

( ) 1
N I Q

−
= −  

From our example P-matrix we have 

1 2 3

2

3

1 0 0 .4
1.32 .526

0 1 .6 0
.789 1.32

N
−

    
= − =      

      
 

 

Q = a submatrix extracted from the P-matrix canonical form 
and used to obtain the fundamental matrix 

I = an identity matrix 

 

TIME TO ABSORPTION   p.419 

The time to absorption or t-matrix, gives the number of 
expected steps before the chain is absorbed.  In other 
words, given that the chain begins in state i, we can 
expect absorption to occur in ti steps. 

Nt c=  

From our example N-matrix of the previous box we have 

Number of
steps to
absorption

2

3

1.32 .526 1 1.84

.789 1.32 1 2.11
t

     
= × =     

     

678
 

N = the fundamental matrix 
c = a column matrix of ones 

 

PROBABILITY OF ABSORPTION   p.420 

The probability of absorption or B-matrix, gives the 
probability that the chain is absorbed in state j given 
that it began in state i. 

B NR=  

From our example N-matrix of the previous box we have 

1 4

2

3

1.32 .526 .6 0
B .789 .211

.789 1.32 0 .4
.474 .526

   
= × =     

     
 

 

N = the fundamental matrix 
R = a submatrix of the canonical form 

 



Tom Penick    tom@tomzap.com    www.teicontrols.com/notes    ProbabilityStatisticsRandomProc.pdf    5/18/2001   Page 22 of 25 

REGULAR MARKOV CHAIN   p.433 

A Markov chain is called a regular chain if some 
power of the transition matrix has only positive 
elements.  In other words, for some n, it is possible to 
go from any state to any state in exactly n steps.  
Every regular chain is also ergodic. 

 

ERGODIC MARKOV CHAIN   p.433 

A Markov chain is called an ergodic chain if it is 
possible to go from every state to every other state 
(not necessarily in one move).  Ergodic chains are 
sometimes called irreducible. 

 

W   FIXED PROBABILITY MATRIX   p.434 

As the transition matrix of a regular Markov chain is 
raised to a higher power, the result tends toward a 
matrix of common rows called the fixed probability 
matrix.  Sometimes you can use a calculator and 
raise P to a power of about 12 to see what it goes to 
as n gets large.  Other times this doesn’t work (all 
rows of W are not equal) and you have to use the 
method of Solving For w in the next box. 

W lim Pn

n→∞
=  

If we define w as one of the common rows of W, then 

wP w=   and  Pc c=  

w is called the fixed probability vector.  The elements of w 
will all be positive and will sum to one.  The fact that all rows 
of W are the same means that the probability of arriving at a 
particular state after many steps is the same regardless of 
the starting point. 

( )P I 0w − =  

P = the transition matrix 
c = a column matrix of ones 
w = the fixed probability vector 
I = an identity matrix 

 

SOLVING FOR w   p.436 

Since Pw w=  and 1 2 3 1w w w+ + =  (assuming a 

3×3 P-matrix), we have 4 equations and 3 unknowns 

1 2 3 1w w w+ + =  

1 11 1 21 2 31 3 1P wi p w p w p w w= + + =  

2 12 1 22 2 32 3 2P wi p w p w p w w= + + =  

3 13 1 23 2 33 3 3P wi p w p w p w w= + + =  

P = the transition matrix 
pij = the element from row i and column j of the transition 

matrix 
w = the fixed probability vector 
wj = the element from column j of any row of limiting matrix 

W 

 

Z   FUNDAMENTAL MATRIX OF AN 
ERGODIC CHAIN   p.456 

As with absorbing chains, the fundamental matrix of 
an ergodic chain leads to useful information, but is 
found in a different way 

( ) 1
Z I P W

−
= − +  

P = the transition matrix 
I = an identity matrix 
W = the fixed probability matrix 

 

MEAN FIRST PASSAGE MATRIX OF AN 
ERGODIC CHAIN   p.459 

The mean first passage matrix gives the expected 
number of steps from an initial state to a destination 
state.  The mean first passage matrix is denoted by 
the letter M and is found one element at a time using 
the following formula 

jj ij
ij

j

z z
m

w

−
=  

mij = an element of the mean first passage matrix 
z = an element of the fundamental matrix 
wj = an element of the fixed probability vector 
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SOME SAMPLE/CLASSIC PROBLEMS 

MEDICAL PROBABILITIES 

A drug is thought to be effective with probability x 
each time it is used.  A beta function can be estimated 
to fit the probability and expected density (see Beta 
Density Function p12).  A new probability can be 
given data from more recent trials and successes.  
Given α and β, and subsequent knowledge that there 
have been i successes in n new events, the 
probability of an event being successful is  

( )success
i

P
n

α +
=

α + β +
 

 

THE ENVELOPE PROBLEM 

This is also called the hat check problem.  n letters are 
randomly inserted into n addressed envelopes.  What 
is the probability that no letter will be put into the 
correct envelope?  

The probability that the first letter is put into the 
correct envelope is 1/n.  Given that the first has been 
placed in the proper envelope, the probability that the 
second one is put into the correct envelope is 1/(n-1) 
and so on.  So the probability that all are put into the 
correct envelopes is the product of the individual 
probabilities or 

( )1 2

1
!nP E E E

n
∩ ∩ ∩ =L  

But the question was what is the probability that NO 
letter will be put into the correct envelope.  To make a 
long story short, this turns out to be  

( ) ( )1 1 1
no letter in correct envelope 1

2! 3! !
n

P
n

= − + −L  

 

THE BIRTHDAY PROBLEM 

Given r people, what is the probability that there are at 
least two with the same birthday?  It is easier to find 
the probability that no two will have the same birthday 
and subtract that from one. 

Considering the first person, he could have any of 365 
birthdays.  Then the second person could only have 
one of 364 birthdays since one had been taken by the 
first person.  The third person could have one of the 
363 unused birthdays, etc.  The sample space 
consists of all of the possible combinations of 
birthdays that the group could have. 

( ) ( )365 364 365 1some share 1a birthday 365r

r
P

⋅ ⋅ ⋅ − +
= −

…
 

 

A CARD PROBLEM 

A Gin hand of 10 cards is dealt.  What is the 
probability that 4 cards belong to one suit, and there 
are 3 cards in each of two other suits? 

4 3 13 13 13

1 2 4 3 3
0.044

52

10

      
      
       =

 
 
 

 

The equation reads, “from 4 suits choose 1 suit, from 
the remaining 3 suits choose 2 suits, from one suit of 
13 cards choose 4 cards, from another suit choose 3 
cards, and from another suit choose 3 cards.  Divide 
the product of these by the number of 10-card hands 
possible from a deck of 52 cards.” 
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GENERAL MATHEMATICAL 

EULER'S EQUATION 
cos sinje jφ = φ + φ  

 

TRIGONOMETRIC IDENTITIES 
2cosj je e+ θ − θ+ = θ  

2sinj je e j+ θ − θ− = θ  
j cos j sine± θ = θ ± θ  

 

LOGARITHMS 
ln bx b e x= ↔ =  ln lnyx y x=  

ln xe x=  lna b ae b=  

log y
a x y a x= ↔ =  

 

CALCULUS – L’HÔPITOL’S RULE 
If the limit of f(x)/g(x) as x approaches c produces the 
indeterminate form 0/0, ∞ / ∞, or −∞ /  ∞, then the 
derivative of both numerator and denominator may be 
taken 

( )
( )

( )
( )

lim lim
x c x c

f x f x

g x g x→ →

′
=

′
 

provided the limit on the right exists or is infinite.  The 
derivative may be taken repeatedly provided the 
numerator and denominator get the same treatment. 

To convert a limit to a form on which L'Hôpital's Rule 
can be used, try algebraic manipulation or try setting y 
equal to the limit then take the natural log of both 
sides. The ln can be placed to the right of lim. This 
is manipulated into fractional form so L'Hôpital's Rule 
can be used, thus getting rid of the ln. When this 
limit is found, this is actually the value of ln y where 
y is the value we are looking for. 

Other indeterminate forms (which might be 
convertible) are 1∞ , ∞0 , 00, 0⋅ ∞, and ∞−∞.  Note that 
0∞ = 0 

 

CALCULUS - DERIVATIVES 

2
d
dx

u v u u v
v v

′ ′⋅ − ⋅
=   

lnx xd
dx a a a=  lnu xd

dx a u a a′= ⋅  

u ud
dx e u e′= ⋅  

1
lnd

dx x
x

=  lnd
dx

u
u

u

′
=  

 

CALCULUS - INTEGRATION 

dx x C= +∫  
1

1

n
n x

x dx C
n

+

= +
+∫  

1u ue dx e C
u

= ⋅ +
′∫  ( )1x xxe dx x e C= − +∫  

( )2
1

ax
ax e

xe dx ax C
a

= − +∫  

( )
( )

( )
( ) ( )

2
1 / 2

0

/ 2 1 / 2

1 / 2 !
for odd

2
1 3 5 1

for even
2

n
n ax

n n

n
n

ax e dx
n

n
aa

+∞ −

+

−  

=
⋅ ⋅ − π

∫ L
 

1
lndx x C

x
= +∫  

1
ln

x xa dx a C
a

= +∫  

2 1 1
2 4sin sin 2u du u u C= − +∫  

2 1 1
2 4cos sin 2u du u u C= + +∫  

Integration by parts: u dv uv v du= −∫ ∫  

 

FACTORIAL 

n! is the number of ways a collection of n objects can 
be ordered.  See also Stirling Approximation. 

 

STIRLING APPROXIMATION 

Useful in calculating large factorials. 

! n nn n e−;    or   ! 2n nn n e n−= π  

 

ex  INFINITE SUM 

Useful in the subject of probability. 

0 !

k
x

k

x
e

k

∞

=

= ∑  

 

e-x  ANOTHER e THING 

As n → ∞, 1
n

xx
e

n
− − → 
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SERIES 
( ) ( )1

1 2 3 1
2

n n
n

−
= + + + + −L  

1
1 1

2
x x+ +; ,  1x =  

2 3 41 3 5 35
1

2 8 16 1281

x x x x
x

− + − + −
+

; L ,  1 1
2 2x− < <  

2 4 6
2

1
1

1
x x x

x
+ + + +

−
; L ,  1 1

2 2x− < <  

( )
2 3

2

1
1 2 3 4

1
x x x

x
+ + + +

−
; L ,  1 1

2 2x− < <  

2 31
1

1
x x x

x
− + − +

+
; L ,  1 1

2 2x− < <  

2 31
1

1
x x x

x
+ + + +

−
; L ,  1 1x− < <  

2 3 4

1
x

x x x x
x

= + + + +
−

L ,  1 1x− < <  

2 3 4

1
2 3! 4!

x x x x
e x= + + + + +L  

( )1
1 2 3

2

x x
n

+
= + + + +L  

( )( ) 2 2 2 21 2 1
1 2 3

6

x x x
n

+ +
= + + + +L  

 

BINOMIAL THEOREM 
Also called binomial expansion.  When m is a positive 
integer, this is a finite series of m+1 terms.  When m is 
not a positive integer, the series converges for -1<x<1. 

( ) ( ) ( ) ( ) ( )21 1 2 1
1 1

2! !
m nm m m m m m n

x mx x x
n

− − − − +
+ = + + + + +

LL L  

 

QUADRATIC EQUATION 
GIven the equation 02 =++ cbxax . 

x
b b ac

a
=

− ± −2 4
2

 

 

LINEARIZING AN EQUATION 
Small nonlinear terms are removed.  Nonlinear terms 
include: 

• variables raised to a power 
• variables multiplied by other variables 

∆ values are considered variables, e.g. ∆t. 

 

SPHERE 
2 2Area 4d r= π = π    3 31 4

6 3Volume d r= π = π  

 

GRAPHING TERMINOLOGY 
 With x being the horizontal axis and y the vertical, we have 

a graph of y versus x or y as a function of x.  The x-axis 
represents the independent variable and the y-axis 
represents the dependent variable, so that when a graph 
is used to illustrate data, the data of regular interval (often 
this is time) is plotted on the x-axis and the corresponding 
data is dependent on those values and is plotted on the y-
axis. 

GLOSSARY 
derangement  A permutation of elements in which the position 

of all elements have changed with respect to a reference 
permutation. 

distribution function  A distribution function assigns 
probabilities to each possible outcome.  The sum of the 
probabilities is 1.  The probability density function may be 
obtained by taking the derivative of the distribution function. 

independent trials  A special class of random variables.  A 
sequence of random variables X1, X2, … Xn that are mutually 
independent and that have the same distribution is called a 
sequence of independent trials or an independent trials 
process. 

median  A value of a random variable for which all greater 
values make the distribution function greater than one half 
and all lesser values make it less than one half.  Or, a value 
in an ordered set of values below and above which there is 
an equal number of values. 

random variable  A variable representing the outcome of a 
particular experiment.  For example, the random variable X1 
might represent the outcome of two coin tosses.  It's value 
could be HT or HH, etc. 

stochastic  Random; involving a random variable; involving 
chance or probability. 

uniform distribution  The probabilities of all outcomes are 
equal.  If the sample space contains n discrete outcomes 
numbered 1 through n, then the uniform distribution function 
is m(ω) = 1/n. 


