THE GRAM-SCHMIDT PROCESS and QR FACTORIZATION

Given a matrix M with linearly independent columns, the following steps will yield an orthonormal $n \times m$ matrix Q and an upper triangular $m \times m$ matrix R such that $M=Q R$. Consider the form below where M is the 2-column matrix $\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$.

$$
M=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{w}_{1} & \mathbf{w}_{2}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right]=Q R
$$

We must find $r_{11}, \mathbf{w}_{1} r_{12}, r_{22}$, and \mathbf{w}_{2} preferably in that order.

$$
\begin{array}{|l|l|}
\hline r_{11}=\left\|\mathbf{v}_{1}\right\| & \begin{array}{l}
\left\|\mathbf{v}_{1}\right\| \text { means "the norm of } \mathbf{v}_{1} \text { ", which is the length of the vector. For example } \\
\text { if } \mathbf{v}_{1} \text { were composed of the elements } a, b, \text { and } c, \text { then }\left\|\mathbf{v}_{1}\right\|=\sqrt{a^{2}+b^{2}+c^{2}} .
\end{array} \\
\hline
\end{array}
$$

$$
\mathbf{w}_{1}=\frac{1}{r_{11}} \mathbf{v}_{1}
$$

$r_{12}=\mathbf{w}_{1} \cdot \mathbf{v}_{2}$	For example if \mathbf{w}_{1} were composed of the elements d, e, f and \mathbf{v}_{2} were composed of the elements a, b, and c, then:	$\mathbf{w}_{1} \cdot \mathbf{v}_{2}=\left[\begin{array}{l}d \\ e \\ f\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=d a+e b+f c$

$$
r_{22}=\left\|\mathbf{v}_{2}-r_{12} \mathbf{w}_{1}\right\|
$$

$$
\mathbf{w}_{2}=\frac{1}{r_{22}}\left(\mathbf{v}_{2}-r_{12} \mathbf{w}_{1}\right)
$$

If M is a 3-column matrix, we can use the above values and continue by finding r_{13}, r_{23}, r_{33}, and

$$
\begin{array}{ll}
\mathbf{w}_{3} . & \begin{array}{lll}
M=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right]=Q R \\
r_{13}=\mathbf{w}_{1} \cdot \mathbf{v}_{3} & r_{23}=\mathbf{w}_{2} \cdot \mathbf{v}_{3} \quad r_{33}=\left\|\mathbf{v}_{3}-r_{13} \mathbf{w}_{1}-r_{23} \mathbf{w}_{2}\right\| & \mathbf{w}_{3}=\frac{1}{r_{33}}\left(\mathbf{v}_{3}-r_{13} \mathbf{w}_{1}-r_{23} \mathbf{w}_{2}\right)
\end{array}
\end{array}
$$

APPLICATIONS OF THE GRAM-SCHMIDT PROCESS

This process can be used to find an orthonormal vector as well. For example if we are given 2 orthonormal vectors in \mathfrak{R}^{3}, and wish to find the third, just pick any third vector that is linearly independent of the other two and form a 3×3 matrix. Do a QR factorization on this matrix. In the result Q, will be the two original vectors and the third (unique) orthonormal vector.

When working with inner product spaces, substitute inner product notation where dot products are found in the Gram-Schmidt process, i.e. where $\mathbf{w}_{1} \cdot \mathbf{v}_{2}$ is found, substitute $\left\langle\mathbf{w}_{1}, \mathbf{v}_{2}\right\rangle$. (The dot product is a type of inner product.)

