PROOF OF A SOLUTION

An example of the steps involved in proving that there is a solution to a statement and determining what that solution is.

Definition: A solution is a function defined on \Re_{+}that is differentiable for $t>0$ which satisfies the problem statement.

Problem: Prove that there is a solution x for $x^{\prime}(t)+a x(t)=f(t), t \geq 0$ and determine the solution.

Solution:

1. Assume that f is continuous.
2. Suppose that there exists a solution x. Then it can be written in this way because $e^{-a t}$ can

$$
\begin{equation*}
x(t)=q(t) e^{-a t} \tag{eq.2}
\end{equation*}
$$ never be zero and we haven't yet defined $q(t)$.

3. Substitute $q(t) e^{-a t}$ for $x(t)$ in the problem statement.

Then simplify:

$$
\begin{gathered}
q^{\prime}(t) e^{-a t}+q(t)(-a) e^{-a t}+a q(t) e^{-a t}=f(t) \\
q^{\prime}(t) e^{-a t}=f(t) \\
q^{\prime}(t)=e^{a t} f(t)
\end{gathered}
$$

4. Integrate from 0 to t.

$$
\begin{equation*}
\int_{0}^{t} q^{\prime}(\tau) d \tau=\int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.4a}
\end{equation*}
$$

Then simplify:

$$
\begin{equation*}
q(t)-q(0)=\int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.4b}
\end{equation*}
$$

And rewrite, letting $q(0)=c$:

$$
\begin{equation*}
q(t)=\int_{0}^{t} e^{a \tau} f(\tau) d \tau+c \tag{eq.4c}
\end{equation*}
$$

5. So if there is a solution x, we must have: with:

$$
\begin{gather*}
x(t)=q(t) e^{-a t} \tag{eq.2}\\
q(t)=\int_{0}^{t} e^{a \tau} f(\tau) d \tau+c \tag{eq.4c}
\end{gather*}
$$

6. Substituting $q(t)$ as given in (eq. 4c) into the equation (eq. 2) we have:

If there is a solution x, then the solution is:

$$
\begin{equation*}
x(t)=c e^{-a t}+\int_{0}^{t} e^{-a(t-\tau)} f(\tau) d \tau \tag{eq.6b}
\end{equation*}
$$

7. Setting $t=0$ we see that $c=x(0)$.

$$
\begin{align*}
& x(t)=c e^{-a t}+e^{-a t} \int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.6a}\\
& x(t)=c e^{-a t}+\int_{0}^{t} e^{-a t} e^{a \tau} f(\tau) d \tau
\end{align*}
$$

$$
x(0)=c e^{0}+0
$$

8. So, taking (eq. 6a):

$$
\begin{equation*}
x(t)=c e^{-a t}+e^{-a t} \int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.6a}
\end{equation*}
$$

And differentiating:

$$
\begin{gather*}
x^{\prime}(t)=-a c e^{-a t}+e^{-a t} e^{a t} f(t)-a e^{-a t} \int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.8a}\\
x^{\prime}(t)=-a c e^{-a t}-a e^{-a t} \int_{0}^{t} e^{a \tau} f(\tau) d \tau \tag{eq.8b}
\end{gather*}
$$

9. So from the problem $\quad x^{\prime}(t)+a x(t)=$
statement and (eq. 6b) and (eq. 8b) we have:

$$
\begin{aligned}
& -a c e^{-a t}-a e^{-a t} \int_{0}^{t} e^{a \tau} f(\tau) d \tau+f(t)+a c e^{-a t}+a \int_{0}^{t} e^{-a(t-\tau)} f(\tau) d \tau \\
& =f(t)
\end{aligned}
$$

10. This shows that given:

$$
\begin{gather*}
x^{\prime}(t)+a x(t)=f(t), \quad x(0)=c, \quad t \geq 0 \\
x(t)=c e^{-a t}+\int_{0}^{t} e^{-a(t-\tau)} f(\tau) d \tau, \quad t \geq 0 \tag{eq.6b}
\end{gather*}
$$

there is exactly one solution called x and x is given by:

