THE LAPLACE TRANSFORM

The Laplace transform of a function $f(t)$ is expressed symbolically as $F(s)$, where s is a complex value.

$$
\mathscr{L}[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The formula shown is called the unilateral or one-sided Laplace transform because the integration takes place over the interval from 0 to ∞; the bilateral or two-sided transform integrates from $-\infty$ to ∞.

THE INVERSE LAPLACE TRANSFORM

$$
f(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} F(s) e^{s t} d s
$$

where c is the abscissa of convergence (defined later). The text says the use of this formula is too complicated for the scope of the book.

In my Differential Equations class, we had a substitute teacher one day that gave us this formula for the Inverse Laplace Transform. Normally you get the inverse Laplace transform from tables but this is a way to calculate. I don't know how it works but thought I would save it. He said that this and some other things that aren't found in current math textbooks are found in a 1935 book by Widder called "Advanced Calculus" which he recommends for engineers.

$$
\mathscr{L}^{-1}[F(s)]=f(t)=\lim _{k \rightarrow \infty} \frac{(-1)^{k}}{k!} \times f^{k}\left(\frac{k}{t}\right) \times\left(\frac{k}{t}\right)^{k+1}
$$

USING THE LAPLACE TRANSFORM

When finding the Laplace transform of a function, the result of performing the integration may contain a term such as $e^{-(s+a) t}$. It should be noted that as $t \rightarrow \infty$, this term does not necessarily go to infinity as well because of the complex variable s.

$$
\lim _{t \rightarrow \infty} e^{-(s+a) t}=\left\{\begin{array}{l}
0, \text { when the real part of } s+a>0 \\
\infty, \text { when the real part of } s+a<0
\end{array}\right\}
$$

The solution concerns only the part of the complex plane where the real part of $s+a$ in this example is greater than zero and this area is called the region of convergence. It is said to consist of
 the right half-plane of the complex plane bounded by the abscissa of convergence, c, which in this case is equal to the real part of s minus the variable a.

TIME-DERIVATIVES OF THE LAPLACE TRANSFORM

The First Derivative: $\quad F^{\prime}(s)=s F(s)-\underbrace{f(0)}_{\text {initial condition }}$
The Second Derivative: $\quad F^{\prime \prime}(s)=s^{2} F(s)-s \underbrace{f(0)-f^{\prime}(0)}_{\text {initial conditions }}$

TIME-SHIFTING THE LAPLACE TRANSFORM

This formula represents a time-shift to the right $\left(t_{0}\right.$ is positive).

$$
f\left(t-t_{0}\right) \Leftrightarrow F(s) e^{-s t_{0}} \quad \mathscr{L}\left[f\left(t-t_{0}\right)\right]=\int_{0}^{\infty} f\left(t-t_{0}\right) e^{-s t} e^{-s t_{0}} d t, \quad t_{0} \geq 0
$$

Delaying a signal by t_{0} seconds is equivalent to multiplying its transform by $e^{-s t_{0}}$. The timeshifting property is useful in finding the Laplace transform of piecewise continuous functions.

TIME-DOMAIN SOLUTIONS USING THE LAPLACE TRANSFORM

By taking the Laplace transform of an equation describing a linear time-invariant continuous-time (LTIC) system it is possible to simplify an equation of derivatives into an algebraic expression. The following substitutions are made:
$Y(s) \Leftrightarrow y(t)$, the zero-state response
$F(s) \Leftrightarrow f(t)$, the input function
$H(s) \Leftrightarrow P(t) / Q(t)$, or the ratio of $Y(s) / F(s)$ when all initial conditions are zero. The poles of $H(s)$ are the characteristic roots of the system. $H(s)$ is also the Laplace transform of the unit impulse response $h(t)$.

$$
H(s)=\int_{0}^{\infty} h(t) e^{-s t} d t
$$

The transform of the equation is reduced to simplest form and then the inverse transform is taken using the table of
 Laplace transforms.

A TABLE OF LAPLACE TRANSFORMS

	$f(t)$	$F(s)$
1	$\delta(t)$	1
2	$u(t)$	$\frac{1}{s}$
3	$t u(t)$	$\frac{1}{s^{2}}$
4	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t} u(t)$	$\frac{1}{s-\lambda}$
6	$t e^{\lambda t} u(t)$	$\frac{1}{(s-\lambda) 2}$
7	$t^{n} e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
8a	$\cos b t u(t)$	$\frac{s}{s^{2}+b^{2}}$
8b	$\sin b t u(t)$	$\frac{b}{s^{2}+b^{2}}$
9a	$e^{-a t} \cos b t u(t)$	$\frac{s+a}{(s+a)^{2}+b^{2}}$
9 b	$e^{-a t} \sin b t u(t)$	$\frac{b}{(s+a)^{2}+b^{2}}$
10a	$r e^{-a t} \cos (b t+\theta) u(t)$	$\frac{(r \cos \theta) s+(a r \cos \theta-b r \sin \theta)}{s^{2}+2 a s+\left(a^{2}+b^{2}\right)}$
10b	$r e^{-a t} \cos (b t+\theta) u(t)$	$\frac{0.5 r e^{j \theta}}{s+a-j b}+\frac{0.5 r e^{-j \theta}}{s+a+j b}$
10c	$\begin{aligned} & r e^{-a t} \cos (b t+\theta) u(t) \\ & r=\sqrt{\frac{A^{2} c+B^{2}-2 A B a}{c-a^{2}}} \end{aligned}$	$\begin{aligned} & \frac{A s+B}{s^{2}+2 a s+c} \\ & \theta=\tan ^{-1} \frac{A a-B}{A \sqrt{c-a^{2}}}, \quad b=\sqrt{c-a^{2}} \end{aligned}$
10d	$e^{-a t}\left[A \cos b t+\frac{B-A a}{b} \sin b t\right]$	$u(t) \quad \frac{A s+B}{s^{2}+2 a s+c}, \quad b=\sqrt{c-a^{2}}$

A TABLE OF LAPLACE TRANSFORM OPERATIONS

Operation	$f(t)$	$F(s)$
Addition	$f_{1}(t)+f_{2}(t)$	$F_{1}(s)+F_{2}(s)$
Scalar multiplication	$k f(t)$	$k F(s)$
Time differentiation	$\frac{d f}{d t}$	$s F(s)-f(0)$
	$\frac{d^{2} f}{d t^{2}}$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
	$\frac{d^{3} f}{d t^{3}}$	$s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)$
Time Integration	$\int_{0}^{t} f(t) d t$	$\frac{1}{s} F(s)$
	$\int_{-\infty}^{t} f(t) d t$	$\frac{1}{s} F(s)+\frac{1}{s} \int_{-\infty}^{0} f(t) d t$
Time shift	$f\left(t-t_{0}\right) u\left(t-t_{0}\right)$	$F(s) e^{-s t_{0}}, \quad t_{0} \geq 0$
Frequency shift	$f(t) e^{s_{0} t}$	$F\left(s-s_{0}\right)$
Frequency differentiation	$-t f(t)$	$\frac{d F(s)}{d s}$
Frequency integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) d s$
Scaling	$f(a t), a \geq 0$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
Time convolution	$f_{1}(t) * f_{2}(t)$	$F_{1}(s) F_{2}(s)$
Frequency convolution	$f_{1}(t) f_{2}(t)$	$\frac{1}{2 \pi j} F_{1}(s) * F_{2}(s)$
Initial value	$f(0)$	$\lim _{s \rightarrow \infty} s F(s)$
Final value	$f(\infty)$	$\lim _{s \rightarrow 0} s F(s) \quad$ (poles of $s F(s)$ in LHP)

