THE LAPLACE TRANSFORM

Fundamentals of the Laplace Transform

THE LAPLACE TRANSFORM

The Laplace transform of a function f(t) is expressed symbolically as F(s), where s is a complex value.

$$\mathscr{L}[f(t)] = F(s) = \int_0^\infty f(t) e^{-st} dt$$

The formula shown is called the **unilateral** or one-sided Laplace transform because the integration takes place over the interval from 0 to ∞ ; the **bilateral** or two-sided transform integrates from $-\infty$ to ∞ .

THE INVERSE LAPLACE TRANSFORM

$$f(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$$

where c is the **abscissa of convergence** (defined later). The text says the use of this formula is too complicated for the scope of the book.

In my Differential Equations class, we had a substitute teacher one day that gave us this formula for the Inverse Laplace Transform. Normally you get the inverse Laplace transform from tables but this is a way to calculate. I don't know how it works but thought I would save it. He said that this and some other things that aren't found in current math textbooks are found in a 1935 book by Widder called "Advanced Calculus" which he recommends for engineers.

$$\mathcal{L}^{-1}[F(s)] = f(t) = \lim_{k \to \infty} \frac{(-1)^k}{k!} \times f^k \left(\frac{k}{t}\right) \times \left(\frac{k}{t}\right)^{k+1}$$

USING THE LAPLACE TRANSFORM

When finding the Laplace transform of a function, the result of performing the integration may contain a term such as $e^{-(s+a)t}$. It should be noted that as $t \rightarrow \infty$, this term does not necessarily go to infinity as well because of the complex variable *s*.

$$\lim_{t \to \infty} e^{-(s+a)t} = \begin{cases} 0, \text{ when the real part of } s+a > 0\\ \infty, \text{ when the real part of } s+a < 0 \end{cases}$$

z

o

С

The solution concerns only the part of the complex plane where the real part of s + a in this example is greater than zero and this area is called the **region of convergence**. It is said to consist of the **right half-plane** of the complex plane bounded by the

abscissa of convergence, c, which in this case is equal to the real part of s minus the variable a.

TIME-DERIVATIVES OF THE LAPLACE TRANSFORM

The First Derivative: $F'(s) = sF(s) - \underbrace{f(0)}_{\text{initial condition}}$

The Second Derivative: $F''(s) = s^2 F(s) - s \underbrace{f(0) - f'(0)}_{\text{initial conditions}}$

TIME-SHIFTING THE LAPLACE TRANSFORM

This formula represents a time-shift to the <u>right</u> (t_0 is positive).

$$f(t-t_0) \Leftrightarrow F(s)e^{-st_0} \qquad \qquad \mathcal{L}[f(t-t_0)] = \int_0^\infty f(t-t_0)e^{-st}e^{-st_0}dt, \qquad t_0 \ge 0$$

Delaying a signal by t_0 seconds is equivalent to multiplying its transform by e^{-st_0} . The timeshifting property is useful in finding the Laplace transform of piecewise continuous functions.

TIME-DOMAIN SOLUTIONS USING THE LAPLACE TRANSFORM

By taking the Laplace transform of an equation describing a linear time-invariant continuous-time (LTIC) system it is possible to simplify an equation of derivatives into an algebraic expression. The following substitutions are made:

 $Y(s) \Leftrightarrow y(t)$, the zero-state response $F(s) \Leftrightarrow f(t)$, the input function $H(s) \Leftrightarrow P(t)/Q(t)$, or the ratio of Y(s)/F(s) when all initial conditions are zero. The poles of H(s)are the **characteristic roots** of the system. H(s) is also the Laplace transform of the **unit impulse response** h(t).

$$H(s) = \int_0^\infty h(t) e^{-st} dt$$

The transform of the equation is reduced to simplest form and then the inverse transform is taken using the table of Laplace transforms.

	f(t)	F(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
6	$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)2}$
7	$t^n e^{\lambda t} u(t)$	$\frac{n!}{\left(s-\lambda\right)^{n+1}}$
8a	$\cos bt u(t)$	$\frac{s}{s^2 + b^2}$
8b	$\sin bt u(t)$	$\frac{b}{s^2 + b^2}$
9a	$e^{-at}\cos btu(t)$	$\frac{s+a}{(s+a)^2+b^2}$
9b	$e^{-at}\sin btu(t)$	$\frac{b}{(s+a)^2+b^2}$
10a	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
10b	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
10c	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}},$	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{c - a^2}}, \qquad b = \sqrt{c - a^2}$
10d	$e^{-at}\left[A\cos bt + \frac{B-Aa}{b}\sin bt\right]$	bt $u(t)$ $\frac{As+B}{s^2+2as+c}$, $b=\sqrt{c-a^2}$

A TABLE OF LAPLACE TRANSFORMS

Operation	f(t)	F(s)
Addition	$f_1(t) + f_2(t)$	$F_1(s) + F_2(s)$
Scalar multiplication	kf(t)	kF(s)
Time differentiation	$\frac{df}{dt}$	sF(s) - f(0)
	$\frac{d^2f}{dt^2}$	$s^{2}F(s) - sf(0) - f'(0)$
	$\frac{d^3f}{dt^3}$	$s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$
Time Integration	$\int_0^t f(t) dt$	$\frac{1}{s}F(s)$
	$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{s}F(s) + \frac{1}{s}\int_{-\infty}^{0}f(t)dt$
Time shift	$f(t-t_0)u(t-t_0)$	$F(s)e^{-st_0}, t_0 \ge 0$
Frequency shift	$f(t)e^{s_0t}$	$F(s-s_0)$
Frequency differentiation	-tf(t)	$\frac{dF(s)}{ds}$
Frequency integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) ds$
Scaling	$f(at), a \ge 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Time convolution	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$
Frequency convolution	$f_1(t)f_2(t)$	$\frac{1}{2\pi j}F_1(s)*F_2(s)$
Initial value	f(0)	$\lim_{s\to\infty} sF(s)$
Final value	$f(\infty)$	$\lim_{s \to 0} sF(s) \text{(poles of } sF(s) \text{ in LHP)}$

A TABLE OF LAPLACE TRANSFORM OPERATIONS