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THE LAPLACE TRANSFORM
Fundamentals of the Laplace Transform

THE LAPLACE TRANSFORM
The Laplace transform of a function f(t) is expressed symbolically as F(s), where s is a complex
value.
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The formula shown is called the unilateral or one-sided Laplace transform because the integration
takes place over the interval from 0 to ∞; the bilateral or two-sided transform integrates from -∞
to ∞.

THE INVERSE LAPLACE TRANSFORM
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where c is the abscissa of convergence (defined later).  The text says the use of this formula is too
complicated for the scope of the book.

In my Differential Equations class, we had a substitute teacher one day that gave us this formula
for the Inverse Laplace Transform.  Normally you get the inverse Laplace transform from tables
but this is a way to calculate.  I don't know how it works but thought I would save it.  He said that
this and some other things that aren't found in current math textbooks are found in a 1935 book by
Widder called "Advanced Calculus" which he recommends for engineers.

1
1

!
)1(

lim)()]([
+

∞→

− 





×






×

−
==

k
k

k

k t
k

t
k

f
k

tfsFL

USING THE LAPLACE TRANSFORM
When finding the Laplace transform of a function, the result of
performing the integration may contain a term such as e-(s + a)t.  It
should be noted that as t→∞, this term does not necessarily go to
infinity as well because of the complex variable s.
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The solution concerns only the part of the complex plane where
the real part of s + a in this example is greater than zero and this
area is called the region of convergence.  It is said to consist of
the right half-plane of the complex plane bounded by the
abscissa of convergence, c, which in this case is equal to the real part of s minus the variable a.
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TIME-DERIVATIVES OF THE LAPLACE TRANSFORM

The First Derivative: {
condition initial
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The Second Derivative: 4434421
conditions initial
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TIME-SHIFTING THE LAPLACE TRANSFORM
This formula represents a time-shift to the right (t0 is positive).
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Delaying a signal by t0 seconds is equivalent to multiplying its transform by 0ste− .  The time-
shifting property is useful in finding the Laplace transform of piecewise continuous functions.

TIME-DOMAIN SOLUTIONS USING THE LAPLACE TRANSFORM
By taking the Laplace transform of an equation describing a linear time-invariant continuous-time
(LTIC) system it is possible to simplify an equation of derivatives into an algebraic expression.
The following substitutions are made:

Y(s) ⇔ y(t), the zero-state response
F(s) ⇔ f(t), the input function
H(s) ⇔ P(t)/Q(t), or the ratio of Y(s)/F(s) when all

initial conditions are zero.  The poles of H(s)
are the characteristic roots of the system.
H(s) is also the Laplace transform of the unit
impulse response h(t).
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The transform of the equation is reduced to simplest form
and then the inverse transform is taken using the table of
Laplace transforms.

LTIC SYSTEM EQUATION

Input

Polynomials of the
(differential)

Polynomial from
which the 
characteristic
equation, modes
and roots are
derived.

Output

Q (D)

D
operator.
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A TABLE OF LAPLACE TRANSFORMS

f(t) F(s)
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A TABLE OF LAPLACE TRANSFORM OPERATIONS

Operation f(t) F(s)

Addition )()( 21 tftf + )()( 21 sFsF +

Scalar multiplication )(tkf )(skF

Time differentiation
dt
df

)0()( fssF −

2

2

dt
fd

)0()0()(2 fsfsFs ′−−

3

3

dt
fd

)0()0()0()( 23 ffsfssFs ′′−′−−

Time Integration ∫
t

dttf
0

)( )(
1

sF
s

∫ ∞−

t
dttf )( ∫ ∞−

+
0

)(
1

)(
1

dttf
s

sF
s

Time shift )()( 00 ttuttf −− 0)( stesF − , 00 ≥t

Frequency shift tsetf 0)( )( 0ssF −

Frequency differentiation )(ttf−
ds

sdF )(

Frequency integration
t
tf )(

∫
∞

s
dssF )(

Scaling 0),( ≥aatf 







a
s

F
a
1

Time convolution )()( 21 tftf ∗ )()( 21 sFsF

Frequency convolution )()( 21 tftf )()(
2
1

21 sFsF
j

∗
π

Initial value )0(f )(lim ssF
s ∞→

Final value )(∞f )(lim
0

ssF
s→

   (poles of sF(s) in LHP)


