INTRODUCTION

Voltage Gain:

$A_{v} = \frac{v_{o}}{v_{I}}$	v_O = output voltage v_I = input voltage
$A_{\nu(dB)} = 20\log A_{\nu} $	

Power Gain:

$A_p = \frac{P_L}{P_I} = \frac{v_O i_O}{v_I i_I} = A_v A_i$	P_L = load power P_I = input power
$A_{p(dB)} = 20 \log A_p$	

Current Gain:

$A_i = \frac{i_o}{i_I}$	i_O = output current i_I = input current
$A_{i(dB)} = 20 \log A_i $	

- <u>Transistor Bias</u>: difference in potential between base and emitter.
- <u>Q-Point</u>: (also quiescent point, dc bias point, operating point) is the center of the **transfer characteristic** (operating voltage range) at which it is desirable to **bias** the transistor.

The mean is the average value.

 $\frac{\text{\% ERROR}}{\text{value of one division}} \times 100 = \text{percent error}$ $\frac{1}{\text{quantity counted}} \times 100 = \text{percent error}$

<u>RMS error</u> is the average error (in engineering units), also called the standard deviation.	ε_{rms} = rms error [eng. units] N = number of samples m_i = sample [eng. units]
$\boldsymbol{e}_{rms} = \sqrt{\left(\frac{1}{N}\right)^2 \sum_{i=1}^N (m_i - \overline{m})^2}$	\overline{m} = mean value (avg. value) [eng. units]

RESISTOR COLOR CODE						
FIRST 2	BANDS	THIR	THIRD BAND		FOURTH BAND	
COLOR	VALUE	COLOR	MAGNITUDE	COLOR	TOLERANCE	
black	0	silver	0.XX Ω	none	±20%	
brown	1	gold	Χ.Χ Ω	silver	±10%	
red	2	black	XX Ω	gold	±5%	
orange	3	brown	XX0 Ω			
yellow	4	red	Χ.Χ Ω			
green	5	orange	XX kΩ			
blue	6	yellow	XX0 kΩ			
purple	7	green	X.X MΩ			
gray	8	blue	XX MΩ			
white	9					

<u>Capacitor Code</u>: 3-digit code. The first two digits are the significant digits. The third digit specifies the number of zeros to follow the result, giving the value in picofarads. For example:

103 = 10 & 000 = 10000 pF = 10 nF = .01 mF.

DIGITAL SIGNAL ANALYZER (DSA)

- The **sample rate** must be at least two times the frequency. The sample rate is the number of samples taken per second or **frame size / total sample time**.
- The **frame size** is required by the software to be some power of two. This is the number of segments that the sample is broken into.
- The **total sample time** must be some multiple of the period (no fractions of a period).

total sample time = $\frac{\text{frame size}}{\text{sample rate}}$

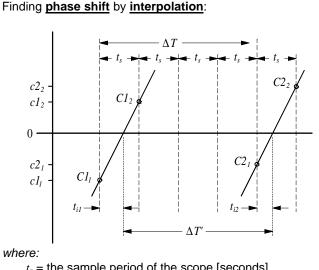
total sample time = $\frac{1}{\text{frequency}} \times \text{number of periods}$

 $\frac{\text{frame size}}{\text{sample rate}} = \frac{\text{number of periods}}{\text{frequency}}$

Fourier Series: Any periodic function of period *T* can be expressed as a sum of sinusoids. The Fourier Series is only valid for functions that are truly periodic--that never end.

$$v(t) = A_o + \sum_{m=1}^{\infty} \left[A_m \sin\left(\frac{2\pi m}{T}\right) + \phi_m \right]$$

where $A_o = \frac{1}{T} \int_0^T v(t) dt$ = the DC level or average value of


the function. A_0 is the DC level. A_m is the amplitude of the m^{th} harmonic. ϕ_m is the phase of the m^{th} harmonic.

$$A_{m} = \sqrt{\left(\frac{1}{T}\int_{0}^{T}v(t)\sin(2m\pi t/T)dt\right)^{2} + \left(\frac{1}{T}\int_{0}^{T}v(t)\cos(2m\pi t/T)dt\right)^{2}}$$
$$\phi = \arctan\left(\frac{\left(\frac{1}{T}\int_{0}^{T}v(t)\cos(2m\pi t/T)dt\right)}{\left(\frac{1}{T}\int_{0}^{T}v(t)\sin(2m\pi t/T)dt\right)}$$

THE OSCILLOSCOPE

Finding the <u>phase</u> <u>shift</u> on the scope:	ϕ = phase shift [degrees] Δt = difference in time of the zero- crossings of two waveforms
$\phi = \frac{\Delta t}{T} \times 360 \text{ degrees}$	[seconds] T = period [seconds]

$$t_i$$
 = the horizontal distance from cursor position CI_1 to
the zero crossing of the first wave [seconds]

- t_{i2} = the horizontal distance from cursor position $C2_1$ to the zero crossing of the second wave [seconds]
- $\Delta T'$ = the actual offset of the two waves [seconds]
- ΔT = the offset of the two waves as measured by the firstselected cursor positions [seconds]
- $C1_1$ = the first-selected position of Cursor 1
- $C2_1$ = the first-selected position of Cursor 2
- CI_2 = the second-selected position of Cursor 1
- C_{2_2} = the second-selected position of Cursor 2
- *c1*₁ = the vertical dimension of the first-selected position of Cursor 1 [volts]
- *c*2₁ = the vertical dimension of the first-selected position of Cursor 2 [volts]
- *c1*² = the vertical dimension of the second-selected position of Cursor 1 [volts]
- c2₂ = the vertical dimension of the second-selected position of Cursor 2 [volts]

$$t_{i1} = \frac{|c1_1|}{|c1_1| + |c2_1|} t_s \qquad t_{i2} = \frac{|c2_1|}{|c2_1| + |c2_2|} t_s$$
$$dT' = dT - t_{i1} + t_{i2}$$

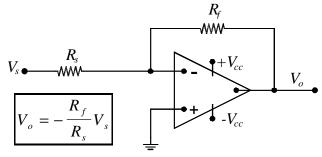
DETERMINING THE TIME CONSTANT τ :

Method 1: Where the voltage can be observed reaching the steady state value:

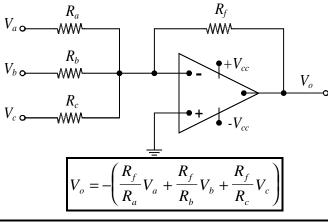
- 1) Place cursor C2 where the voltage appears to have reached the steady state. It remains here.
- 2) Place cursor C1 at another point on the curve.
- 3) Record ΔV_l and ΔT_l .
- 4) Move C1 to another position along the curve.
- 5) Record ΔV_2 and ΔT_2 .
- 6) Solve for $\boldsymbol{\tau}$

$$\ln \frac{\Delta V_2}{\Delta V_1} = \frac{-\left|\Delta T_1 - \Delta T_2\right|}{\tau}$$

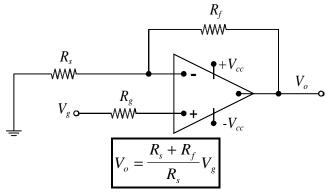
Method 2: This method can be used even when the steady state voltage value is not visible:

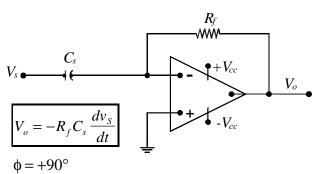

- 1) Place cursor C2 on the curve near its midpoint relative to the *x*-axis. It remains here.
- 2) Choose a value for ΔT such that cursor C1 may be placed this distance from C2 on either side.
- 3) Using C1, determine values ΔV_1 and ΔV_2 found by placing C1 ΔT from the left and ΔT from the right of C2.
- 4) ΔV_1 and ΔV_2 are interchangeable, affecting only the sign of the result. Use the formula to find τ :

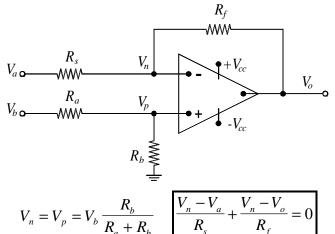
$$\ln \frac{\Delta V_2}{\Delta V_1} = \frac{-\Delta T}{\tau}$$

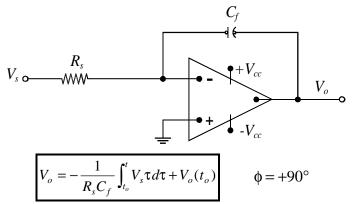

CHARACTERISTICS OF THE IDEAL OP AMP

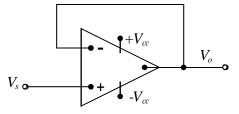
- The difference between the voltages at the inputs $(v_2 v_1)$ multiplied by the open-loop gain A yields the op amp output $A(v_2 v_1)$.
- The input impedance is infinite.
- The input current is zero.
- The output impedance is zero.
- The output current is whatever is required to maintain the output voltage.
- The output is in phase with the signal at the positive input.
- Infinite **common-mode rejection**, the rejection of identical signals at the + and inputs.
- The open-loop gain *A* is equal for all frequencies.
- The open-loop gain *A* is infinite.

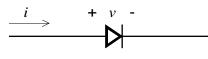

INVERTING AMPLIFIER


INVERTING SUMMING AMPLIFIER


NONINVERTING AMPLIFIER


DIFFERENTIATING AMPLIFIER


DIFFERENCE AMPLIFIER



FOLLOWER OR UNITY GAIN AMPLIFIER

DIODES

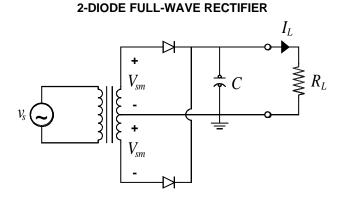
FORWARD-BIASED DIODE

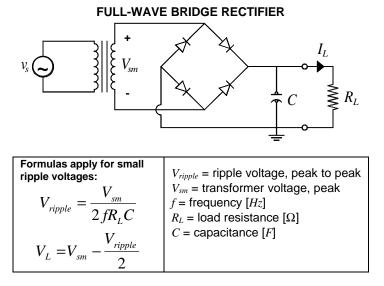
anode cathode

CHARACTERISTICS OF THE IDEAL DIODE

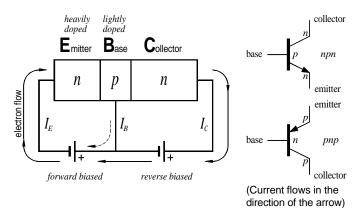
- If v is negative, the diode is *reversed biased* and acts as an open circuit.
- If a positive current is applied in the direction shown, the diode is *forward biased* and acts like a closed switch with v = 0.

CHARACTERISTICS OF A REAL DIODE


- If v is negative, the diode is *reversed biased*. If the magnitude of v is small, the diode conducts little until the magnitude of v reaches the *breakdown voltage* at which point the diode conducts.
- If a positive current is applied in the direction shown, the diode is *forward biased*. There is not a significant amount of conduction until the voltage reaches about 0.7V. For higher voltages, the diode conducts with a small voltage drop.

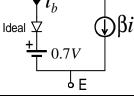

THE I:V RELATIONSHIP (EE338 version) IN THE FORWARD- BIAS REGION	I_D = diode current I_S = saturation current e = natural number V_{e} = voltage exceed diode
$I_D = I_S e^{V_D/nV_T}$	V_D = voltage across diode n = 1 generally V_T = thermal voltage, ≈ 25 mV
$\ln I_D / I_S = V_D / nV_T$	

THE I:V RELATIONSHIP (version	I_D = diode current
from previous class) IN THE	I_S = saturation current
FORWARD-BIAS REGION	e = natural number
17 /	V_D = voltage across diode
$I_D = I_S (e^{V_D / nV_T} - 1)$	n = 1 generally
2 5	V_T = thermal voltage, $\approx 25 \text{ mV}$


THERMAL VOLTAGE	V_T = thermal voltage, $\approx 25 \text{ mV}$ k = Boltzmann's constant,
kT	1.38×10 ⁻²³ joules/kelvin
$V_T = \frac{q}{q}$	T = absolute temperature (kelvins), 273 + temp. in ℃
	q = magnitude of electronic charge, 1.60×10 ⁻¹⁹ coulomb

RECTIFIER CIRCUITS

BIPOLAR JUNCTION TRANSISTORS - DC ANALYSIS



Bias: the difference in DC potential between base and emitter.

SMALL SIGNAL MODEL (NPN)

Use for DC analysis.

For PNP, reverse the polarities of the diode and voltage supply; reverse the direction of flow in the current supply.

 R_2

 I_B

•*V_{CC}*

 R_C

 I_C

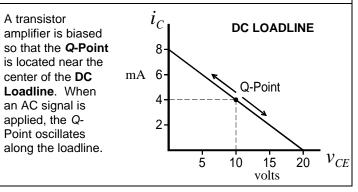
 I_E

 R_E

В

Q

Q-POINT:


The Q-Point (also quiescent point, dc bias point, or operating point) is the center of the transfer characteristic (operating voltage range) at which it is desirable to **bias** the transistor. It is adjusted by setting the DC voltage level of the base terminal.

Rule of Thumb: To set the Q-Point, let

$$V_B = R_C I_C = \frac{1}{3} V_{CC}$$

 $I_1 = 10I_B = 10\frac{I_E}{\beta + 1}$

where I_1 is the current through the base-to-ground resistor.

 $I_B = DC$ base current BASE CURRENT: I_C = DC collector current I_E = DC emitter current The relationships among the emitter, base, and collector currents β = the **beta** value of the are functions of β . The transistor relationships apply to signal current as well as DC current. $I_E = (\beta + 1)I_B$ $I_C = \beta I_B$

amplifier.

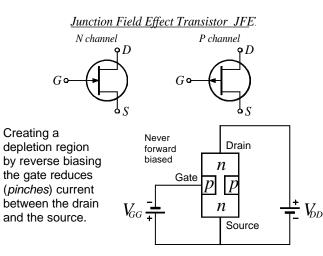
$$\alpha \text{ AND } \beta:$$

$$\alpha = \frac{I_C}{I_E} \qquad \beta = \frac{I_C}{I_B}$$

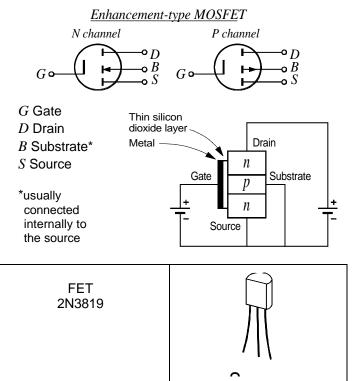
$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

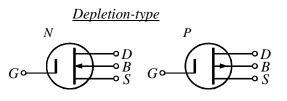
$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

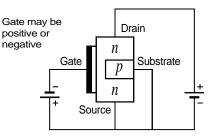

$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

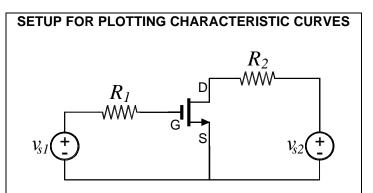
$$\beta = \frac{\alpha}{1 -$$


С 0 \mathfrak{l}_{l_h}


Tom Penick tomzap@eden.com www.teicontrols.com/notes 11/22/98

FIELD-EFFECT TRANSISTORS


Metal Oxide Silicon Field Effect Transistors



Depletion-type MOSFET

MOSFET's do not have thermal runaway.

In Pspice, select Analysis / Setup / DC Sweep / Linear / Nested / Voltage Source / Values. Set values for V_{s1} such as 0,-1,-2,-3,-4. Sweep V_{s2} over a range of voltages. Plot drain current versus drain-to-source voltage.

GENERAL

GRAPHING TERMINOLOGY

With x being the horizontal axis and y the vertical, we have a graph of y versus x or y as a function of x. The x-axis represents the **independent variable** and the y-axis represents the **dependent variable**, so that when a graph is used to illustrate data, the data of regular interval (often this is time) is plotted on the x-axis and the corresponding data is dependent on those values and is plotted on the yaxis.

PSPICE ABBREVIATIONS

- AC voltage used for AC sweep simulation
- **DF** (large value) from $e^{-DF(T)/2}$
- **TD** Time Delay before start
- TR Time to Rise

TRAN the source voltage for a transient analysis

TF Time to Fall

PW Pulse Width

PER Period

- T1, T2, T3, etc. elapsed time from zero
- V1 bottom voltage level (must be less than V2)

V2 top or next voltage level

VAMPL voltage amplitude

VOFF voltage offset

PARAMETERS IN PSPICE

Let's say we are setting up parameters for a resistor **RL**. We choose a parameter name **RLpar**. In the resistor **RL** attributes dialog we enter **VALUE={RLpar}**. Add a new part PARAM. In its attributes dialog set **NAME1=RLpar**. Give it a default value like **VALUE1=10k**. Close the dialog and drag the part PARAMETERS to one side to be sure that there isn't another one hidden under it.

Select Analysis, Settings, Parametric. Under Swept Variable Type, select **Global Parameter**. Under Name, put **RLpar**. Under Sweep Type, fill in as appropriate.