OSCILLATION IN AN A- β BOX

If a system contains a frequency of phase reversal (has 3 or more frequency corners) then oscillation may occur when there is a loop gain of at least 1, i.e. $\beta|A(j \omega)|=1$ at the frequency of phase reversal.

The Problem:

The A-box is described by the following transfer function:

$$
A(j \omega)=\frac{1000}{\left(1+j \frac{f}{10^{4}}\right)\left(1+j \frac{f}{10^{5}}\right)^{2}}
$$

where $A(\mathrm{j} \omega)$ is the A box gain.

Find the frequency of phase reversal f_{0}

Use the expression:

$$
-180=-\tan ^{-1} \frac{f_{0}}{10^{4}}-2 \tan ^{-1} \frac{f_{0}}{10^{5}}
$$

By trial and error, it can be determined that $f_{\mathbf{0}}=\mathbf{1 . 0 9 6} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{H z}$. This is the frequency of phase reversal.

Find the minimum value of β for which oscillation will occur

First, evaluate $\boldsymbol{A}(\mathbf{j} \omega)$ at the frequency of phase reversal f_{0}, and find the magnitude of the A-box gain.

$$
\begin{aligned}
& A(j \omega)=\frac{1000}{\left(1+j \frac{1.096 \times 10^{5}}{10^{4}}\right)\left(1+j \frac{1.096 \times 10^{5}}{10^{5}}\right)^{2}} \\
& |A(j \omega)|=41.28
\end{aligned}
$$

Now we find the value of β for which the

$$
\begin{aligned}
& 1=\beta \mid A\left(f_{1}\right)=41.28 \beta \\
& \beta=0.02422
\end{aligned}
$$

What value of β would result in a gain margin of 10 dB ?

In other words, what value of β would result in the loop gain being 10 dB below 0 dB at the frequency of phase reversal?

First, convert the value of negative 10 dB to units of V/V.

Then find the value of b that would result in this gain.

$$
10^{(-10 / 20)}=0.3162 \mathrm{~V} / \mathrm{V}
$$

$$
\begin{aligned}
& \beta|A(j \omega)|=0.3162 \\
& \beta=\frac{0.3162}{0.4128} \\
& \beta=0.7660
\end{aligned}
$$

Find the gain margin when β is given

If β is known to be 0.001 , what is the gain margin? In other words, by how many dB is the loop gain below 0 dB at the frequency of phase reversal?

First, find the loop gain magnitude at phase reversal. Convert to decibels and change the sign to positive.

$$
\begin{aligned}
& \beta|A(j \omega)|=0.04128 \\
& 20 \log 0.04128=-27.69 \mathrm{~dB} \\
& \text { Gain Margin }=27.69 \mathrm{~dB}
\end{aligned}
$$

What value of β would result in a phase margin of 45° ?

Use the expression:

$$
-180+45=-\tan ^{-1} \frac{f_{1}}{10^{4}}-2 \tan ^{-1} \frac{f_{1}}{10^{5}}
$$

By trial and error, it can be determined that $f_{\mathbf{1}}=\mathbf{5 . 2 8 5} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{H z}$. This is the frequency at which the amplifier is 45° from phase reversal.

Now we find the value of β for which the magnitude of the loop gain is one.

$$
\begin{aligned}
& 1=\beta\left|A\left(f_{1}\right)\right|=\beta \frac{1000}{\left(1+j \frac{5.285 \times 10^{4}}{10^{4}}\right)\left(1+j \frac{5.285 \times 10^{4}}{10^{5}}\right)^{2}} \\
& \beta=0.006881
\end{aligned}
$$

