DIFFERENTIAL AMPLIFIER, SINGLE-ENDED OUTPUT
 Analysis of a symmetrical differential single-ended output amplifier

THE CIRCUIT

	$V_{C C}$
SINGLE-ENDED OUTPUT AMPLIFIER	

DC ANALYSIS

	Since the circuit is symmetrical, we are looking at only $1 / 2$ the circuit, through which $1 / 2$ the bias current flows. The bias resistance R is ignored. We find the value of r_{e} for our AC circuit model using these formulas: $\begin{array}{ll} I_{C}=\frac{\beta}{\beta+1} I_{E}=0.5 \frac{\beta}{\beta+1} I_{\text {BAS }} & g_{m}=40 I_{C} \\ r_{\pi}=\frac{\beta}{g_{m}} & r_{e}=\frac{r_{\pi}}{\beta+1} \end{array}$

AC ANALYSIS

For the AC analysis, we divide the input signals $v_{\mathrm{i} 1}$ and $v_{\mathrm{i} 2}$ into differential and common-mode components. The inputs are written as

$$
\begin{array}{l|l}
v_{i 1}=v_{i c m}+\frac{v_{i d}}{2} & v_{i 2}=v_{i c m}-\frac{v_{i d}}{2} \\
\hline
\end{array}
$$

We solve for the differential output v_{d} and the common mode output v_{cm} separately using different models and then combine the results.

DIFFERENTIAL MODE ANALYSIS - solving for the differential mode voltage gain $\boldsymbol{A}_{\mathrm{d}}$

COMMON MODE ANALYSIS - solving for the common mode voltage gain $\boldsymbol{A}_{\mathrm{cm}}$

AC ANALYSIS	Because of the symmetry of the circuit, we can write R as two parallel $2 R$ resistors and observe that no current flows between them. Therefore this connection can be eliminated and we separate the circuit into halves. Once again, we need only look at the right-hand half since that contains the output. Even though we have looked only at the right-hand side in both phases of the analysis, the presence of the left-hand side does significantly affect the outcome.	CM MODEL
$i_{e}=\frac{v_{i c m}}{r_{e}+2 R} \quad i_{c}=\frac{\beta}{\beta+1}\left(\frac{v_{i c m}}{r_{e}+2 R}\right)$	$) v_{\text {cmout }}=-i_{c} R_{C}=\frac{\beta}{\beta+1}($	$\mathrm{C}_{C} \quad A_{c m}=\frac{v_{c m o u t}}{v_{i c m}}$

COMMON MODE REJECTION RATIO (CMRR)

$$
\mathrm{CMRR}=\left|\frac{A_{d}}{A_{c m}}\right| \quad \quad \mathrm{CMRR}_{\mathrm{dB}}=20 \log _{10}\left|\frac{A_{d}}{A_{c m}}\right|
$$

