1's Complement and 2's Complement Arithmetic

1's Complement Arithmetic

The Formula

$$
\bar{N}=\left(2^{n}-1\right)-N
$$

where: n is the number of bits per word N is a positive integer
\bar{N} is $-N$ in 1's complement notation
For example with an 8 -bit word and $N=6$, we have:

$$
\bar{N}=\left(2^{8}-1\right)-6=255-6=249=11111001_{2}
$$

In Binary

An alternate way to find the 1's complement is to simply take the bit by bit complement of the binary number.
For example: $\quad N=+6=00000110_{2}$

$$
\bar{N}=-6=11111001_{2}
$$

Conversely, given the 1's complement we can find the magnitude of the number by taking it's 1's complement.
The largest number that can be represented in 8 -bit 1's complement is $01111111_{2}=127=\$ 7 \mathrm{~F}$. The smallest is $10000000_{2}=-127$. Note that the values 00000000_{2} and 11111111_{2} both represent zero.

Addition

End-around Carry. When the addition of two values results in a carry, the carry bit is added to the sum in the rightmost position. There is no overflow as long as the magnitude of the result is not greater than $2^{n}-1$.

2's Complement Arithmetic

The Formula

$$
N^{*}=2^{n}-N
$$

where: n is the number of bits per word
N is a positive integer
N^{*} is $-N$ in 2 's complement notation
For example with an 8 -bit word and $N=6$, we have:

$$
N^{*}=2^{8}-6=256-6=250=11111010_{2}
$$

In Binary

An alternate way to find the 2 's complement is to start at the right and complement each bit to the left of the first "1".
For example: $\quad N=+6=00000110_{2}$

$$
N^{*}=-6=11111010_{2}
$$

Conversely, given the 2 's complement we can find the magnitude of the number by taking it's 2 's complement.
The largest number that can be represented in 8 -bit 2 s complement is $01111111_{2}=127$. The smallest is $10000000_{2}=-128$.

Addition

When the addition of two values results in a carry, the carry bit is ignored. There is no overflow as long as the is not greater than $2^{n}-1$ nor less than -2^{n}.

