The Fourier Series
 Solving A Boundary Value Problem using the method of Separation of Variables and the Fourier Series

The Problem:

6. p 572

$$
\begin{array}{ll}
2 u_{t}=u_{x x}, \quad 0<x<1, \quad t>0 ; \quad & u(0, t)=u(1, t)=0, \\
& u(x, 0)=4 \sin \pi x \cos ^{3} \pi x
\end{array}
$$

The Solution:

First of all we know that $u_{t}=k u_{x x}$ and since we are given $2 u_{t}=u_{x x}$ we find that $k=\frac{1}{2}$.
L is the length and we are given $0<x<1$ so we know that $L=1$.
We need to do some manipulation to the initial condition $u(x, 0)=4 \sin \pi x \cos ^{3} \pi x$ so that it is in the form of sine only. We will use the trig identity $\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$. There are other ways to convert the expression to sine only but this method is simple in that it uses only one identity.

We rewrite the initial condition as:	$u(x, 0)=4 \sin \pi x \cos \pi x \cos ^{2} \pi x$

We apply the trig identity to the term $\sin \pi x \cos \pi x$ with the result:	$u(x, 0)=2 \sin 2 \pi x \cos \pi x \cos \pi x$

We apply the identity a second time with the result: $\quad u(x, 0)=\sin 3 \pi x \cos \pi x+\sin \pi x \cos \pi x$

We again apply the identity, this time to both parts of the equation with the result:	$u(x, 0)=\frac{1}{2}[\sin 4 \pi x+\sin 2 \pi x]+\frac{1}{2}[\sin 2 \pi x+\sin 0]$

We now have the expression as a function of sine only which can be simplified to:	$u(x, 0)=\frac{1}{2} \sin 4 \pi x+\sin 2 \pi x$

The Formula:

To gain our solution we have this formula: $u_{n}(x, t)=X_{n}(x) T_{n}(t)=c_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}$ where n is an integer or a series of integers and c is a constant or constants.

Filling in the known values for k and L we have $u_{n}(x, t)=c_{n} e^{-\frac{1}{2} n^{2} \pi^{2} t} \sin n \pi x$.
We must select values for n and c to satisfy the initial condition $u(x, 0)=\frac{1}{2} \sin 4 \pi x+\sin 2 \pi x$.
Notice that in the initial condition, $t=0$ so the term $e^{-\frac{1}{2} n^{2} \pi^{2} t}$ will become 1 and does not need our attention. The remaining term $c_{n} \sin n \pi x$ closely resembles the two terms in our initial condition such that we can pick out the values we need for c and n to satisfy the condition by inspection. In the first term, $c=1 / 2$ and $n=4$. In the second term $c=1$ and $n=2$.

The Answer:

So the solution is $u_{n}(x, t)=\frac{1}{2} e^{-8 \pi^{2} t} \sin 4 \pi x+e^{-2 \pi^{2} t} \sin 2 \pi x$

