The Fourier Series

Solving A Boundary Value Problem using the method of Separation of Variables and the Fourier Series

The Problem:

572 $2u_t = u_{xx}, \quad 0 < x < 1, \quad t > 0; \qquad u(0,t) = u(1,t) = 0,$ $u(x,0) = 4\sin\pi x \cos^3\pi x$

The Solution:

First of all we know that $u_t = ku_{xx}$ and since we are given $2u_t = u_{xx}$ we find that $k = \frac{1}{2}$. *L* is the length and we are given 0 < x < 1 so we know that $\overline{L=1}$. We need to do some manipulation to the initial condition $u(x,0) = 4\sin p x \cos^3 p x$ so that it is in the form of sine only. We will use the trig identity $\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$. There are other ways to convert the expression to sine only but this method is simple in that it uses only one identity.

We rewrite the initial condition as:	$u(x,0) = 4\sin\pi x \cos\pi x \cos^2\pi x$
We apply the trig identity to the term $\sin \pi x \cos \pi x$ with the result:	$u(x,0) = 2\sin 2\pi x \cos \pi x \cos \pi x$
We apply the identity a second time with the result:	$u(x,0) = \sin 3\pi x \cos \pi x + \sin \pi x \cos \pi x$
We again apply the identity, this time to both parts of the equation with the result:	$u(x,0) = \frac{1}{2} [\sin 4\pi x + \sin 2\pi x] + \frac{1}{2} [\sin 2\pi x + \sin 0]$
We now have the expression as a function of sine only which can be simplified to:	$u(x,0) = \frac{1}{2}\sin 4\pi x + \sin 2\pi x$

The Formula:

To gain our solution we have this formula: $u_n(x,t) = X_n(x) T_n(t) = c_n e^{-n^2 \pi^2 k t/L^2} \sin \frac{n\pi x}{L}$ where *n*

is an integer or a series of integers and c is a constant or constants.

Filling in the known values for k and L we have $u_n(x,t) = c_n e^{-\frac{1}{2}n^2\pi^2 t} \sin n\pi x$.

We must select values for *n* and *c* to satisfy the initial condition $u(x,0) = \frac{1}{2} \sin 4\pi x + \sin 2\pi x$.

Notice that in the initial condition, t = 0 so the term $e^{-\frac{1}{2}n^2\pi^2t}$ will become 1 and does not need our attention. The remaining term $c_n \sin n\pi x$ closely resembles the two terms in our initial condition such that we can pick out the values we need for *c* and *n* to satisfy the condition by inspection. In the first term, c = 1/2 and n = 4. In the second term c = 1 and n = 2.

The Answer:

So the solution is $u_n(x,t) = \frac{1}{2}e^{-8\pi^2 t}\sin 4\pi x + e^{-2\pi^2 t}\sin 2\pi x$

Tom Penick tomzap@eden.com www.teicontrols.com/notes 12/13/97