EXACT EQUATION

Solving an Exact first order differential equation
from section 1.6 p62. See the document FirstOrderDiffEq.pdf for a comparison between this and other methods.

THE PROBLEM

31. p62

$$
(2 x+3 y) d x+(3 x+2 y) d y=0 \quad \text { Find the general solution. }
$$

The equation is already written in the form $M d x+N d y=0$ where $\quad \begin{aligned} & M=2 x+3 y \\ & N=3 x+2 y\end{aligned}$
In order to be an Exact equation, the partial derivative of M with
respect to y must equal the partial derivative of N with respect to $x: \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
To verify that we have an Exact equation, we find:

$$
\begin{aligned}
& \frac{d}{d y}(2 x+3 y)=3 \\
& \frac{d}{d x}(3 x+2 y)=3
\end{aligned}
$$

THE SOLUTION

To solve, we first integrate M with respect to x and use $g(y)$ for the constant of integration:

$$
\int M d x=\int(2 x+3 y) d x=x^{2}+3 x y+g(y)
$$

Now we take this result and differentiate with respect to y :

We set this equal to N and solve for $g^{\prime}(y)$:

$$
\frac{d}{d y}\left[x^{2}+3 x y+g(y)\right]=3 x+g^{\prime}(y)
$$

$$
\begin{aligned}
& 3 x+g^{\prime}(y)=3 x+2 y \\
& g^{\prime}(y)=2 y
\end{aligned}
$$

We integrate to find $g(y)$:

$$
g(y)=\int g^{\prime}(y)=\int 2 y d y=y^{2}+C_{1}
$$

Substitute this into the first expression

$$
F(x, y)=x^{2}+3 x y+g(y)=x^{2}+3 x y+y^{2}+C_{1}
$$ containing $g(y)$ to obtain $F(x, y)$:

If an initial condition is given, the value of C_{l} can be found, yielding a particular solution. In this case, an initial condition was not given.

THE ANSWER

The general solution is then written in this form, absorbing the value of C_{l} into C.

$$
x^{2}+3 x y+y^{2}=C
$$

