INDEX			
3-phase power 7	Euler's identity 6	node............................... 5	RLC circuits 5
admittance 6	frequency domain............. 6	noninverting amplifier....... 3	rms 2
amplifier	horsepower 7	Norton equivalent............. 4	root mean square 2
difference 3	impedance 6	one port network 4	series RLC circuits 5
differentiating.............. 3	impedance triangle 7	op amps 3	sinusoidal analysis 5
integrating 3	inductor 6	overdamped.................... 5	step response................... 5
inverting 3	LC tank circuit 4	parallel RLC circuits 5	summing amplifier 3
noninverting................ 3	voltage and current....... 4	path 5	susceptance 6
summing..................... 3	integrating amplifier......... 3	phasor notation................ 6	T equivalent circuit 8
average power.................. 7	inverting amplifier............ 3	phasor transform 5	tank circuit 4
branch............................ 5	LC circuits...................... 4	power 7	Thèvenin equivalent......... 4
capacitor	LC tank circuit................. 4	average....................... 7	transformers 8
voltage and current....... 4	loop 5	complex 7	trig identies 5
coils	magnetically coupled coils 8	reactive....................... 7	turns ratio 8
magnetically coupled 8	maximum power transfer... 7	real............................ 7	two-port circuits.............. 1
complex power 7	mesh 5	power factor 7	underdamped................... 5
critically damped 5	mesh current.................... 8	power factor correction 7	wye circuit...................... 7
current division................ 3	motor efficiency 7	power transfer 7	wye-delta transform 7
delta circuit..................... 7	motors	power triangle 7	z parameters 1
difference amplifier 3	electric........................ 7	reactance 6	τ time constant 4
differentiating amplifier..... 3	N transformer turns ratio .. 8	reactive power 7	
essential branch 5	natural response............... 5	rectangular notation.......... 6	
essential node 5	Neper frequency 5	resonant frequency 5	

TWO-PORT CIRCUITS

$\xrightarrow[V_{1}]{ } \quad I_{I}$			$V_{1}=z_{11} I_{1}+z_{22} I_{2}$
	circuit		$V_{2}=z_{21} I_{1}+z_{22}$
			$V_{1}=z_{12} I_{2}+z_{11} I_{1}$?
$z=\frac{1}{y}$	$\begin{aligned} & I_{1}=y_{11} V_{1}+y_{22} V_{2} \\ & I_{2}=y_{21} V_{1}+y_{22} V_{2} \end{aligned}$		$V_{1} h_{11} I_{1}+h_{22}$
			$I_{2}=h_{21} I_{1}+h_{22} V_{2}$
	$\begin{aligned} & I_{2}=y_{21} V_{1}+y_{22} V_{2} \\ & I_{2}=y_{12} V_{2}+y_{11} V_{1} ? \end{aligned}$		$I_{1}=h_{12} I_{2}+h_{11} V_{1}$?

To calculate the z parameters in a resistive network the equations above are manipulated to the following form, where one of the currents is held to zero. Various manipulations are carried out to find values for the V and I quantities using the known values of the resistors.

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \quad z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \quad z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \quad z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
$$

h parameters are used for transistor specifications
y parameters may be easier to find than z parameters and may be added when networks are paralleled.

RMS

rms stands for root mean square. To obtain the rms value of a periodic function, first square the function, then take the mean value, and finally the square root.
rms by definition: $\quad X_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T}(f(x))^{2} d t}$
rms value of AC voltage: $\quad V_{r m s}=\frac{V_{\max }}{\sqrt{2}}$
$\underbrace{\text { root }}_{\sqrt{\left\langle p^{2}\right\rangle}}$ square $f(t)_{\mathrm{rms}}=\sqrt{\left\langle f(t)^{2}\right\rangle}$

The plot below shows a sine wave and its rms value, along with the intermediate steps of squaring the sine function and taking the mean value of the square. Notice that for this type of function, the mean value of the square is $1 / 2$ the peak value of the square.

Op Amps

INVERTING AMPLIFIER

INVERTING SUMMING AMPLIFIER

$$
V_{o}=-\left(\frac{R_{f}}{R_{a}} V_{a}+\frac{R_{f}}{R_{b}} V_{b}+\frac{R_{f}}{R_{c}} V_{c}\right)
$$

NONINVERTING AMPLIFIER

DIFFERENTIATING AMPLIFIER

INTEGRATING AMPLIFIER

$$
V_{o}=-\frac{1}{R_{s} C_{f}} \int_{t_{o}}^{t} V_{s} d \tau+V_{o}\left(t_{o}\right)
$$

CURRENT DIVISION

THĖVENIN AND NORTON EQUIVALENTS

A one-port network (circuit presenting 2 external terminals) may be represented by either a Thèvenin or Norton equivalent. Note that $R_{E Q}$ has the same value in both the Thèvenin and Norton equivalents.

1) Find the Thèvenin voltage (the open-circuit voltage) or the Norton current (the short-circuit current).
2) To find $R_{e q}$, first "Turn off" the independent sources, i.e. voltage sources go to zero which means they are shorted and current sources also go to zero which means they are opened. Calculate the equivalent resistance of the circuit. This is $R_{e q}$.
3) If there are no independent sources (dependent sources may be present) then $V_{T H}=I_{N}=0$ and the circuit reduces to an equivalent resistance.
4) If there are independent and dependent sources, turn off the independent sources and apply a test source ($V_{T E S T}=1$ or $I_{\text {TEST }}=1$) to the port. Calculate the unknown parameter $V_{T E S T}$ or $I_{\text {TEST }}$ at the port and find $R_{E Q}$ using

$$
V_{T E S T}=I_{T E S T} R_{E Q}
$$

THÈVENIN/NORTON EXAMPLE

LC CIRCUITS

Energy (joules): $w=\frac{1}{2} L i^{2}$
also: $w=\frac{1}{2} L I_{o}{ }^{2}\left(1-e^{-2 t / \tau}\right)$
Time Constant: $\tau=L / R$
Voltage: $v_{L}(t)=L \frac{d i}{d t}$
Current: $I_{L}(t)=\frac{1}{L} \int_{0}^{t} v d \tau+I_{o}$

LC Tank Circuit

Resonant frequency:

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

Equations Common to L \& C Circuits

Current: $i(t)=I_{f}+\left(I_{o}-I_{f}\right) e^{-t / \tau}$
Voltage: $v(t)=V_{f}+\left(V_{o}-V_{f}\right) e^{-t / \tau}$
Power: $p=I_{o}{ }^{2} R e^{-2 t / \tau}$
where I_{0} is initial current [A]
I_{f} is final current [A]
t is time [s]
τ is the time constant; $\tau=\mathrm{RC}$ for capacitive circuits, $\tau=\mathrm{R} / \mathrm{L}$ for inductive circuits [s]
V_{0} is initial voltage [V]
V_{f} is final voltage [V]
p is power [W]
R is resistance [Ω]

RLC CIRCUITS -- Parallel

Sum of node currents in a Parallel RLC circuit:

 which differentiates to:$$
C \frac{d v}{d t}+\frac{v}{R}+\frac{1}{L} \int_{0}^{t} v d \tau+I_{o}=0 \quad C \frac{d^{2} v}{d t^{2}}+\frac{1}{R} \frac{d v}{d t}+\frac{1}{L} v=0
$$

RLC CIRCUITS -- Series

Sum of voltages in a Series RLC circuit:

 which differentiates to:$$
L \frac{d i}{d t}+R i+\frac{1}{C} \int_{0}^{t} i d \tau+V_{o}=0 \quad L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{1}{C} i=0
$$

$$
\frac{d x}{d t} \Leftrightarrow j \omega \mathrm{X} \quad \frac{d^{2} x}{d t^{2}} \Leftrightarrow(j \omega)^{2} \mathrm{X}
$$

RLC CIRCUITS - solving second order equations

α the Neper frequency (damping coefficient) [rad/s]:

$$
\begin{array}{ll|l}
\begin{array}{l}
\text { Parallel } \\
\text { circuits: }
\end{array} & \alpha=\frac{1}{2 R C} & \begin{array}{l}
\text { Series } \\
\text { circuits: }
\end{array}
\end{array} \quad \alpha=\frac{R}{2 L}
$$

ω

the Resonant frequency [rad/s]:

$$
\omega_{o}=\frac{1}{\sqrt{L C}} \quad \omega_{d}=\sqrt{\omega_{o}{ }^{2}-\alpha^{2}} \quad \begin{aligned}
& \text { used in } \\
& \text { underdampe } \\
& \text { d calculations }
\end{aligned}
$$

s_{1}, s_{2} the roots of the characteristic equation [rad/s]:

$$
s_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{o}{ }^{2}} \quad s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{o}{ }^{2}}
$$

Overdamped $\alpha^{2}>\omega^{2}$ (real and distinct roots)

$$
\begin{aligned}
& X(t)=X_{f}+A_{1}{ }^{\prime} e^{s_{1} t}+A_{2}{ }^{\prime} e^{s_{2} t} \\
& X(0)=X_{f}+A_{1}{ }^{\prime}+A_{2}{ }^{\prime} \quad \frac{d x}{d t}(0)=s_{1} A_{1}{ }^{\prime}+s_{2} A_{2}{ }^{\prime}
\end{aligned}
$$

Underdamped $\alpha^{2}<\omega^{2}$ (complex roots)

$$
\begin{aligned}
& X(t)=X_{f}+B_{1}{ }^{\prime} e^{-\alpha t} \cos \omega_{d} t+B_{2}{ }^{\prime} e^{-\alpha t} \sin \omega_{d} t \\
& X(0)=X_{f}+B_{1}{ }^{\prime} \quad \frac{d x}{d t}(0)=-\alpha B_{1}{ }^{\prime}+w_{d} B_{2}{ }^{\prime}
\end{aligned}
$$

Critically Damped $\alpha^{2}=\omega^{2} \quad$ (repeated roots)

$$
\begin{aligned}
& X(t)=X_{f}+D_{1}{ }^{\prime} t e^{-\alpha t}+D_{2}{ }^{\prime} e^{-\alpha t} \\
& X(0)=X_{f}+D_{2}{ }^{\prime} \quad \frac{d x}{d t}(0)=D_{1}{ }^{\prime}-\alpha D_{2}{ }^{\prime}
\end{aligned}
$$

Some Trig Identities

$A \cos \omega t+B \sin \omega t=\sqrt{A^{2}+B^{2}} \cos \left[\cot +\tan \left(\frac{-B}{A}\right)\right]$
$c^{ \pm j \theta}=\cos \theta \pm j \sin \theta \quad$ Euler identity
$\sin \omega t=\cos \left(\omega t-90^{\circ}\right)$

In an overdamped circuit, $\alpha^{2}>\omega^{2}$ and the voltage or current approaches its final value without oscillation.
In an underdamped circuit, $\alpha^{2}<\omega^{2}$ and the voltage or current oscillates about its final value.
In a critically damped circuit, $\alpha^{2}=\omega^{2}$ and the voltage or current is on the verge of oscillating about its final value.
When an expression is integrated, it may be necessary to add in initial values for the constant of integration even if they have been taken into account within other terms.
Natural response is the behavior of a circuit without external sources of excitation.
Step response is the behavior of a circuit with an external source.
A node is a point where two or more circuit elements join.
An essential node is a node where three or more circuit elements join.
A path is a trace of adjoining basic elements with no elements included more than once.
A branch is a path that connects two nodes.
An essential branch is a path which connects two essential nodes without passing through an essential node.
A loop is a path whose last node is the same as the starting node.
A mesh is a loop that does not enclose any other loops.

SINUSOIDAL ANALYSIS

$\pi \times$ degrees $=180 \times$ radians
$\omega=2 \pi f[\mathrm{rad} / \mathrm{s}]=360 f[\mathrm{deg} / \mathrm{s}]$
resonant frequency $\omega_{o}=\frac{1}{\sqrt{L C}}$
$v(t)=V_{m} \cos (\omega t+\phi) \quad i(t)=I_{m} \cos (\omega t+\phi)$
where V_{m} and I_{m} are maximums
equivalent of two parallel impedances $=\frac{\text { product }}{\text { sum }}$
Phasor Transform:

$$
\begin{aligned}
& \mathrm{V}=V_{m} e^{j \phi}=\mathscr{P}\left\{V_{m} \cos (\omega t+\phi)\right\} \\
& v(t)=A \cos \left(\omega t+\phi^{\circ}\right) \Leftrightarrow A \angle \phi^{\circ} \\
& \sin \omega t=\cos \left(\omega t-90^{\circ}\right)
\end{aligned}
$$

Inverse Phasor Transform $\quad \mathscr{P}^{-1}\left\{V_{m} e^{j \phi}\right\}=\mathscr{R}\left\{V_{m} e^{j \phi} e^{j \omega t}\right\}$
A smaller ϕ causes a right shift of the sinusoidal graph.

SINUSOIDAL ANALYSIS

Element:	Resistor	Capacitor	Inductor
Impedance (Z):	R (resistance)	$-j / \omega C$	$j \omega L$
Reactance ($\boldsymbol{X})$	--	$-1 / \omega C$	ωL
Admittance (Y):	G (conductance)	$j \omega C$	$1 / j \omega L$
Susceptance:	--	ωC	$-1 / \omega L$
Voltage:	$\mathbf{I} R$	$\mathrm{I} / j \omega C$	$j \omega L \mathrm{I}$
		$\left(I_{m} / \omega C\right) \angle\left(\theta_{V}-90^{\circ}\right)$	$\omega L I_{m} \angle\left(\theta_{V}+90^{\circ}\right)$
Amperage:	\mathbf{V} / R	$j \omega C \mathrm{~V}$	$\mathrm{~V} / j \omega L$
		$\left(V_{m} / \omega C\right) \angle\left(\theta_{V}+90^{\circ}\right)$	$\left(V_{m} / \omega L\right) \angle\left(\theta_{V}-90^{\circ}\right)$

PHASOR and RECTANGULAR NOTATION

The phasor is a complex number that carries the amplitude and phase angle information of a sinusoidal function. The Phasor concept is rooted in Euler's identity, which relates the exponential function to the trigonometric function:

$$
e^{ \pm \mathrm{j} \theta}=\cos \theta \pm \mathrm{j} \sin \theta
$$

The use of phasor notation may be referred to as working in the phasor domain or the frequency domain. Note that the phasor notation $M \angle \phi$ is equivalent to $M e^{j \phi}$, where ϕ is in radians.
Rectangular Notation: $X \pm j Y$ where X represents the horizontal or real coordinate and Y the vertical or imaginary coordinate. Use this form for addition and subtraction by separately adding and subtracting the real and imaginary components. Be careful with the sign of the \mathbf{j} term:

$$
(A+j B)+(C-j D)=(A+C)+j[B+(-D)]
$$

Phasor Notation: $M \angle \phi^{\circ}$, where M is the magnitude of the phasor and f is the angle CCW from the X axis. Use this form for multiplication and division.

$$
(E \angle \theta)(F \angle \phi)=E F \angle(\theta+\phi) \quad \frac{E \angle \theta}{F \angle \phi}=\frac{E}{F} \angle(\theta-\phi)
$$

A negative magnitude may be converted to positive by adding or subtracting 180° from the angle.

To convert from rectangular to phasor notation:

Rectangular form: $X \pm j Y$
Magnitude: $\quad M=\sqrt{X^{2}+Y^{2}}$
Angle $\phi: \quad \tan \phi=\frac{Y}{X} \quad \begin{aligned} & \text { (Caution: The } Y \text { will be } \\ & \text { negative is the } \mathrm{j} \text { value is being } \\ & \text { subtracted from }\end{aligned}$ subtracted from the real.)

Note: Due to the way the calculator works, if X is negative, you must add 180° after taking the inverse tangent. If the result is greater than 180°, you may optionally subtract 360° to obtain the value closest to the reference angle.

To convert from phasor to rectangular (j) notation:

Phasor form: $\quad M \angle \phi^{\circ}$

X (real) Value: $\quad M \cos \phi$
Y (j or imaginary) Value: $\quad M \sin \phi$
In conversions, the j value will have the same sign as the θ value for angles having a magnitude $<180^{\circ}$.

POWER

Average Power or real power (watts)

$$
\begin{aligned}
P & =\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) \\
& =V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right)
\end{aligned}
$$

Positive P means the load is absorbing average power, negative means delivering or generating.

Reactive Power (VARS)

$$
\begin{aligned}
Q & =\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) \\
& =V_{r m s} I_{r m s} \sin \left(\theta_{v}-\theta_{i}\right)
\end{aligned}
$$

Positive Q means the load is absorbing magnetizing vars (inductive), negative means delivering
(capacitive).

Complex Power (VA)

\mathbf{S}	$=P+j Q$		
	$=V_{r m s} I_{r m s}\left(\theta_{v}-\theta_{i}\right)$	\quad	* means "the complex
:---:			
$=$			
$=\mathbf{V}_{r m s} \mathbf{I}^{*}{ }_{r m s}=\frac{1}{2} \mathbf{V}_{\max } \mathbf{I}^{*}{ }_{\max }=\frac{\mathbf{V}^{2}{ }_{r m s}}{\mathbf{Z} *}$			

Power Factor (ratio of true power to apparent power)

$p f=$	Lagging: Inductive, current lags $(-\mathrm{j}),+\mathrm{Q}$
$\cos \left(\theta_{v}-\theta_{i}\right)$	Leading: Capacitive, current leads $(+\mathrm{j}),-\mathrm{Q}$

Power and Impedance triangles

Maximum Power Transfer

Maximum power transfer occurs when the load impedance is equal to the complex conjugate of the source impedance. Under these conditions, the maximum value of

$$
P_{\max }=\frac{\left|V_{T H}\right|^{2}}{4 R_{L}}
$$ average power absorbed is

3-PHASE POWER

Phase and line voltage relationships in a Wye Circuit

 (positive sequence - clockwise)

Phase and line current relationships in a Delta Circuit (positive sequence - clockwise)

Wye-Delta Transform (for balanced circuits only)

Motor Ratings

$$
\begin{aligned}
P= & \sqrt{3} V_{L} I_{L} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{h p \times 746}{\text { efficiency }} \quad \text { where: } \\
& P \text { is the power input in watts } \\
& \cos \left(\theta_{v}-\theta_{i}\right) \text { is the power factor } \\
& \text { efficiency is expressed as a decimal value }
\end{aligned}
$$

Power Factor Correction

$$
Q=\frac{\mathrm{VARS}}{3}=\frac{(460 / \sqrt{3})^{2}}{x_{\mathrm{c}}=-1 / \omega C} \quad \text { where: }
$$

VARS is a negative value for the amount of correction
460 is the line voltage
C is the value of the capacitor in Farads

TRANSFORMERS

Ideal Transformer

$Z_{\text {IN }}$ is the load seen by the source.

Transformer Turns Ratio

Magnetically Coupled Coils

T Equivalent Circuit

Mesh Current Equations involving mutual inductors

A mesh is a loop that does not enclose other loops in the circuit.

1. Draw current loops emanating from positive voltage sources if present and label I_{1}, I_{2}, I_{3}, etc. for each interior path of the circuit.
2. For each loop form an equation in the form: Voltage or 0 if there is no source in the loop $=R_{l} \times$ (sum of amperages passing through $\left.R_{l}\right)+L_{l} \frac{d}{d t} \times$ (sum of amperages passing through $\left.L_{I}\right)+\ldots$
3. Amperages are positive in the direction of loops regardless of the location of dots on inductors in the loop. However, the sign of an amperage through a mutual inductor is positive iff it enters the mutual inductor at the same end (i.e. dotted or undotted) at which the reference current loop enters the reference inductor.
