# **CIRCUIT THEORY EE411**

| 3-phase power7             | Euler's identity6            |
|----------------------------|------------------------------|
| admittance6                | frequency domain 6           |
| amplifier                  | horsepower7                  |
| difference3                | impedance6                   |
| differentiating3           | impedance triangle7          |
| integrating                | inductor6                    |
| inverting3                 | LC tank circuit4             |
| noninverting3              | voltage and current4         |
| summing3                   | integrating amplifier        |
| average power7             | inverting amplifier          |
| branch5                    | LC circuits                  |
| capacitor                  | LC tank circuit4             |
| voltage and current4       | loop5                        |
| coils                      | magnetically coupled coils 8 |
| magnetically coupled8      | maximum power transfer7      |
| complex power7             | mesh5                        |
| critically damped5         | mesh current8                |
| current division           | motor efficiency7            |
| delta circuit7             | motors                       |
| difference amplifier3      | electric7                    |
| differentiating amplifier3 | N transformer turns ratio8   |
| essential branch5          | natural response5            |
| essential node5            | Neper frequency              |
|                            |                              |

## **INDEX**

| node5                     |
|---------------------------|
| noninverting amplifier3   |
| Norton equivalent4        |
| one port network 4        |
| op amps3                  |
| overdamped5               |
| parallel RLC circuits 5   |
| path 5                    |
| phasor notation6          |
| phasor transform5         |
| power7                    |
| average7                  |
| complex7                  |
| reactive7                 |
| real7                     |
| power factor7             |
| power factor correction 7 |
| power transfer7           |
| power triangle7           |
| reactance 6               |
| reactive power7           |
| rectangular notation6     |
| resonant frequency 5      |

| RLC circuits 5        |
|-----------------------|
| rms 2                 |
| root mean square 2    |
| series RLC circuits 5 |
| sinusoidal analysis 5 |
| step response 5       |
| summing amplifier 3   |
| susceptance 6         |
| T equivalent circuit  |
| tank circuit 4        |
| Thèvenin equivalent 4 |
| transformers          |
| trig identies 5       |
| turns ratio 8         |
| two-port circuits 1   |
| underdamped5          |
| wye circuit7          |
| wye-delta transform   |
| z parameters 1        |
| $\tau$ time constant  |
|                       |

## **TWO-PORT CIRCUITS**

| $V_1$ $I_1$        | circuit network $I_2 V_2$      | $V_{1} = z_{11}I_{1} + z_{22}I_{2}$ $V_{2} = z_{21}I_{1} + z_{22}I_{2}$ $V_{1} = z_{12}I_{2} + z_{11}I_{1}?$ |
|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1                  | $I_1 = y_{11}V_1 + y_{22}V_2$  | $V_1 = h_{11}I_1 + h_{22}V_2$                                                                                |
| $z = -\frac{y}{y}$ | $I_2 = y_{21}V_1 + y_{22}V_2$  | $I_2 = h_{21}I_1 + h_{22}V_2$                                                                                |
|                    | $I_2 = y_{12}V_2 + y_{11}V_1?$ | $I_1 = h_{12}I_2 + h_{11}V_1?$                                                                               |
| To calcula         | te the z parameters in a res   | istive network the                                                                                           |
| equations          | above are manipulated to the   | ne following form,                                                                                           |

equations above are manipulated to the following form, where one of the currents is held to zero. Various manipulations are carried out to find values for the V and I quantities using the known values of the resistors.

$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2=0} z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0} z_{21} = \frac{V_2}{I_1} \bigg|_{I_2=0} z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$$

*h* parameters are used for transistor specifications *y* parameters may be easier to find than *z* parameters and may be added when networks are paralleled.

## RMS

rms stands for **root mean square**. To obtain the rms value of a periodic function, first square the function, then take the mean value, and finally the square root.

rms by definition: 
$$X_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} (f(x))^{2} dt}$$
  
rms value of AC voltage:  $V_{rms} = \frac{V_{max}}{\sqrt{2}}$   
root mean square  $f(t)_{rms} = \sqrt{\langle f(t)^{2} \rangle}$ 

The plot below shows a sine wave and its rms value, along with the intermediate steps of squaring the sine function and taking the mean value of the square. Notice that for this type of function, the mean value of the square is  $\frac{1}{2}$  the peak value of the square.



## **Op Amps**



## THÈVENIN AND NORTON EQUIVALENTS

A **one-port network** (circuit presenting 2 external terminals) may be represented by either a Thèvenin or Norton equivalent. Note that  $R_{EQ}$  has the same value in both the Thèvenin and Norton equivalents.



- 1) Find the Thèvenin voltage (the open-circuit voltage) or the Norton current (the short-circuit current).
- 2) To find  $R_{eq}$ , first "Turn off" the independent sources, i.e. voltage sources go to zero which means they are shorted and current sources also go to zero which means they are opened. Calculate the equivalent resistance of the circuit. This is  $R_{eq}$ .
- 3) If there are no independent sources (dependent sources may be present) then  $V_{TH} = I_N = 0$  and the circuit reduces to an equivalent resistance.
- 4) If there are independent and dependent sources, turn off the independent sources and apply a test source ( $V_{TEST} = 1$ or  $I_{TEST} = 1$ ) to the port. Calculate the unknown parameter  $V_{TEST}$  or  $I_{TEST}$  at the port and find  $R_{EQ}$  using

 $V_{TEST} = I_{TEST} R_{EO}$ 

## **THÈVENIN/NORTON EXAMPLE**



## LC CIRCUITS



## **Equations Common to L & C Circuits**

Current:  $i(t) = I_f + (I_o - I_f)e^{-t/\tau}$ Voltage:  $v(t) = V_f + (V_o - V_f)e^{-t/\tau}$ Power:  $p = I_o^2 R e^{-2t/\tau}$ where  $I_0$  is initial current [A]  $I_f$  is final current [A] t is time [s]  $\tau$  is the time constant;  $\tau = RC$  for capacitive circuits,  $\tau = R/L$  for inductive circuits [s]  $V_0$  is initial voltage [V]  $V_f$  is final voltage [V] p is power [W] R is resistance [ $\Omega$ ]

## **RLC CIRCUITS -- Parallel**

Sum of node currents in a Parallel RLC circuit: which differentiates to:

$$C\frac{dv}{dt} + \frac{v}{R} + \frac{1}{L} \int_{0}^{t} v \, d\tau + I_{o} = 0 \qquad C\frac{d^{2}v}{dt^{2}} + \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v = 0$$

## **RLC CIRCUITS -- Series**

Sum of voltages in a Series RLC circuit: which differentiates to

$$L\frac{di}{dt} + Ri + \frac{1}{C} \int_{0}^{t} i \, d\tau + V_{o} = 0 \qquad L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{1}{C}i = 0$$

$$\frac{dx}{dt} \Leftrightarrow j\omega X \qquad \frac{d^{2}x}{dt^{2}} \Leftrightarrow (j\omega)^{2} X$$

## RLC CIRCUITS – solving second order equations

a the Neper frequency (damping coefficient) [rad/s]:

| Parallel circuits: $\alpha = \frac{1}{2RC}$ | Series<br>circuits: $\alpha = \frac{R}{2L}$ |
|---------------------------------------------|---------------------------------------------|
|---------------------------------------------|---------------------------------------------|

the Resonant frequency [rad/s]:

| $\omega_o = \frac{1}{\sqrt{LC}}$ | $\omega_d = \sqrt{\omega_o^2 - \alpha^2}$ | used in<br>underdampe<br>d calculations |
|----------------------------------|-------------------------------------------|-----------------------------------------|
|----------------------------------|-------------------------------------------|-----------------------------------------|

 $s_1$ ,  $s_2$  the roots of the characteristic equation [rad/s]:

$$= -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad \qquad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

Overdamped 
$$\mathbf{a}^2 > \mathbf{w}^2$$
 (real and distinct roots)  

$$X(t) = X_f + A_1' e^{s_1 t} + A_2' e^{s_2 t}$$

$$X(0) = X_f + A_1' + A_2' \qquad \frac{dx}{dt}(0) = s_1 A_1' + s_2 A_2'$$

**Underdamped**  $\mathbf{a}^2 < \mathbf{w}^2$  (complex roots)

$$X(t) = X_f + B_1' e^{-\alpha t} \cos \omega_d t + B_2' e^{-\alpha t} \sin \omega_d t$$
  

$$X(0) = X_f + B_1' \qquad \frac{dx}{dt}(0) = -\alpha B_1' + w_d B_2'$$

**Critically Damped**  $\mathbf{a}^2 = \mathbf{w}^2$  (repeated roots)

$$X(t) = X_{f} + D_{1}'te^{-\alpha t} + D_{2}'e^{-\alpha t}$$
  

$$X(0) = X_{f} + D_{2}' \qquad \frac{dx}{dt}(0) = D_{1}' - \alpha D_{2}'$$

#### **Some Trig Identities**

*s*<sub>1</sub>

$$A\cos\omega t + B\sin\omega t = \sqrt{A^2 + B^2} \cos\left[\cot + \tan\left(\frac{-B}{A}\right)\right]$$
$$c^{\pm j\theta} = \cos\theta \pm j\sin\theta \quad \text{Euler identity}$$
$$\sin\omega t = \cos(\omega t - 90^\circ)$$

- In an **overdamped** circuit,  $\alpha^2 > \omega^2$  and the voltage or current approaches its final value without oscillation.
- In an **underdamped** circuit,  $\alpha^2 < \omega^2$  and the voltage or current oscillates about its final value.
- In a critically damped circuit,  $\alpha^2 = \omega^2$  and the voltage or current is on the verge of oscillating about its final value.
- When an expression is integrated, it may be necessary to add in initial values for the constant of integration even if they have been taken into account within other terms.
- Natural response is the behavior of a circuit without external sources of excitation.
- Step response is the behavior of a circuit with an external source.
- A **node** is a point where two or more circuit elements join.
- An essential node is a node where three or more circuit elements join.
- A path is a trace of adjoining basic elements with no elements included more than once.
- A **branch** is a path that connects two nodes.
- An essential branch is a path which connects two essential nodes without passing through an essential node.
- A **loop** is a path whose last node is the same as the starting node.
- A mesh is a loop that does not enclose any other loops.

## SINUSOIDAL ANALYSIS

 $\pi \times \text{degrees} = 180 \times \text{radians}$  $\omega = 2\pi f \,[rad / s] = 360 f \,[deg / s]$ resonant frequency  $\omega_o = \frac{1}{\sqrt{LC}}$ 

 $v(t) = V_m \cos(\omega t + \phi)$  $i(t) = I_m \cos(\omega t + \phi)$ where  $V_m$  and  $I_m$  are maximums

equivalent of two parallel impedances  $= \frac{\text{product}}{1 + 1}$ 

| Phasor Transform:        | $V = V_m e^{j\phi} = \mathscr{P}\{V_m \cos(\omega t + \phi)\}$ $v(t) = A\cos(\omega t + \phi^\circ) \Leftrightarrow A \angle \phi^\circ$ $in \omega t = \cos(\omega t - 90^\circ)$ |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverse Phasor Transform | $\mathscr{P}^{-1}\{V_m e^{j\phi}\} = \mathscr{R}\{V_m e^{j\phi} e^{j\omega t}\}$                                                                                                   |

sum

A smaller  $\phi$  causes a right shift of the sinusoidal graph.

## SINUSOIDAL ANALYSIS

| Element:        | Resistor           | Capacitor                                       | Inductor                                        |
|-----------------|--------------------|-------------------------------------------------|-------------------------------------------------|
| Impedance (Z):  | R (resistance)     | $-j/\omega C$                                   | jωL                                             |
| Reactance (X)   |                    | $-1/\omega C$                                   | ω L                                             |
| Admittance (Y): | G (conductance)    | <i>j</i> ω <i>C</i>                             | $1/j\omega L$                                   |
| Susceptance:    |                    | ω C                                             | $-1/\omega L$                                   |
| Voltage:        | I R                | Ι / <i>j</i> ω <i>C</i>                         | jωLI                                            |
|                 |                    | $(I_m / \omega C) \angle (\theta_V - 90^\circ)$ | $\omega L I_m \angle (\theta_V + 90^\circ)$     |
| Amperage:       | $\mathbf{V}$ / $R$ | jωCV                                            | V / <i>j</i> ω <i>L</i>                         |
|                 |                    | $(V_m / \omega C) \angle (\theta_V + 90^\circ)$ | $(V_m / \omega L) \angle (\theta_V - 90^\circ)$ |

## PHASOR and RECTANGULAR NOTATION

The *phasor* is a complex number that carries the amplitude and phase angle information of a sinusoidal function. The Phasor concept is rooted in Euler's identity, which relates the exponential function to the trigonometric function:

 $e^{\pm j\theta} = \cos\theta \pm j\sin\theta$ 

The use of phasor notation may be referred to as working in the *phasor domain* or the *frequency* 

*domain.* Note that the phasor notation  $M \angle \phi$  is equivalent to  $Me^{i\phi}$ , where  $\phi$  is in radians.

<u>Rectangular Notation</u>:  $X \pm jY$  where X represents the

horizontal or real coordinate and Y the vertical or imaginary coordinate. Use this form for addition and subtraction by separately adding and subtracting the real and imaginary components. Be careful with the sign of the j term:



(A + jB) + (C - jD) = (A + C) + j[B + (-D)]

<u>Phasor Notation</u>:  $M \angle \phi^{\circ}$ , where *M* is the magnitude of the phasor and f is the angle CCW from the X axis. Use this form for multiplication and division.

$$(E \angle \theta)(F \angle \phi) = EF \angle (\theta + \phi) \qquad \qquad \frac{E \angle \theta}{F \angle \phi} = \frac{E}{F} \angle (\theta - \phi)$$

A negative magnitude may be converted to positive by adding or subtracting 180° from the angle.

## To convert from rectangular to phasor notation:

Rectangular form:  $X \pm jY$ Magnitude:  $M = \sqrt{X^2 + Y^2}$ Angle  $\phi$ :  $\tan \phi = \frac{Y}{X}$  (Caution: The Y will be negative is the **j** value is being subtracted from the real.) Note: Due to the way the calculator works, if X is negative, you must **add 180°** after taking the inverse tangent. If the result is greater than 180°, you may optionally subtract 360° to obtain the value closest to the reference angle.

To convert from phasor to rectangular (j) notation:

Phasor form:  $M \angle \phi^{\circ}$ 

X (real) Value:  $M \cos \phi$ 

Y (**j** or imaginary) Value:  $M \sin \phi$ 

In conversions, the j value will have the same sign as the  $\theta$  value for angles having a magnitude < 180°.



## POWER

## Average Power or real power (watts)

| $P = \frac{V_m I_m}{V_m OS} (\rho - \rho)$  | Positive <i>P</i> means the load is |
|---------------------------------------------|-------------------------------------|
| $I = \frac{1}{2} \cos(\theta_v - \theta_i)$ | negative means delivering           |
| $=V_{rms}I_{rms}\cos(\theta_v - \theta_i)$  | or generating.                      |

**Reactive Power** (VARS)

| $Q = \frac{V_m I_m}{2} \sin(\theta_v - \theta_i)$ | Positive <i>Q</i> means the load is absorbing <b>magnetizing vars</b> (inductive), negative |
|---------------------------------------------------|---------------------------------------------------------------------------------------------|
| $= V_{rms} I_{rms} \sin(\theta_v - \theta_i)$     | means delivering<br>(capacitive).                                                           |

#### **Complex Power** (VA)

| S = P + jQ<br>= $V_{rms}I_{rms}(\theta_v - \theta_i)$                                     | * means "the complex conjugate of"         |
|-------------------------------------------------------------------------------------------|--------------------------------------------|
| $= \mathbf{V}_{rms} \mathbf{I} *_{rms} = \frac{1}{2} \mathbf{V}_{max} \mathbf{I} *_{max}$ | $=\frac{\mathbf{V}^2_{rms}}{\mathbf{Z}^*}$ |

**Power Factor** (ratio of true power to apparent power)

| pf =                        | Lagging: Inductive, current lags (-j), +Q   |
|-----------------------------|---------------------------------------------|
| $\cos(\theta_v - \theta_i)$ | Leading: Capacitive, current leads (+j), -Q |

## Power and Impedance triangles



#### Maximum Power Transfer

| Maximum power transfer occurs when the<br>load impedance is equal to the complex<br>conjugate of the source impedance. Under<br>these conditions, the maximum value of<br>average power absorbed is | $P_{\max} = \frac{\left  V_{TH} \right }{4R_L}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|

## **3-PHASE POWER**

Phase and line voltage relationships in a Wye Circuit (positive sequence - clockwise)



Phase and line current relationships in a Delta Circuit (positive sequence - clockwise)



Wye-Delta Transform (for balanced circuits only)



Motor Ratings

$$P = \sqrt{3} V_L I_L \cos(\theta_v - \theta_i) = \frac{hp \times 746}{\text{efficiency}} \quad \text{where:}$$

$$P \text{ is the power input in watts}$$

$$\cos(\theta_v - \theta_i) \text{ is the power factor}$$

$$\text{efficiency is expressed as a decimal value}$$

**Power Factor Correction** 

$$Q = \frac{\text{VARS}}{3} = \frac{(460 / \sqrt{3})^2}{x_0 = -1 / \omega C}$$

where:

VARS is a negative value for the amount of correction 460 is the line voltage

C is the value of the capacitor in Farads

## TRANSFORMERS

## **Ideal Transformer**



#### **Transformer Turns Ratio**

$$\begin{array}{c|c} V_{I} & N_{I} & N_{2} & V_{2} \\ \hline I_{I} \hline I_{I} \hline I_{I} \hline I_{I} \\ \hline I_{I} \hline I$$

## **Magnetically Coupled Coils**

| $V_1 \qquad M \qquad V_2$ | $V_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$ |
|---------------------------|-------------------------------------------------|
|                           | $V_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$ |
| $L_1$ $L_2$               | $M = k \sqrt{L_1 L_2}$ where <i>k</i> is        |
|                           | the coefficient of coupling                     |

## **T Equivalent Circuit**



## Mesh Current Equations involving mutual inductors

- A mesh is a loop that does not enclose other loops in the circuit.
- 1. Draw current loops emanating from positive voltage sources if present and label  $I_1$ ,  $I_2$ ,  $I_3$ , etc. for each interior path of the circuit.
- 2. For each loop form an equation in the form: Voltage or 0 if there is no source in the loop =  $R_I \times$  (sum of amperages passing through  $R_I$ ) +  $L_I \frac{d}{dt} \times$  (sum of amperages

```
passing through L_l) + . . .
```

3. Amperages are positive in the direction of loops regardless of the location of dots on inductors in the loop. However, the sign of an amperage through a mutual inductor is positive iff it enters the mutual inductor at the same end (i.e. dotted or undotted) at which the reference current loop enters the reference inductor.