
page 1 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

C Programming
MISC 2456

INDEX

--, 6
!, 7
!=, 7
#, 7
#define, 7, 13
#include, 7
%, 6
&, 6, 23
&&, 6
&=, 6
*, 23
*=, 6
/*, 7
;, 2
\, 6
|, 6
||, 6
|=, 6
|b, 6
~, 6
‘, 6
++, 6
+=, 6
<<, 6
<<=, 6
=, 6
-=, 6
==, 7
>>, 6
>>=, 6
0, 6
abs(), 12
acos(), 12
address, 8, 23
algorithm, 8
and

conditional, 6
logical, 6

argument, 8
array, 21, 24
asin(), 12
assignment, 8, 23
atan(), 12
atomic, 8
auto, 3
backspace, 6
binary, 8
bit, 8
braces, 1
break, 3

byte, 8
carriage, 6
case, 13
ceil(), 12
char, 3
character, 8
code, 13
comment, 7
constant, 11
conversion, 8
conversioncontrol, 8
cos(), 12
cosh(), 12
data, 9
declaration, 2, 9, 19, 23
decrement, 6, 9
default, 13
define, 7
definition, 9
div, 12
divide, 6
double, 3, 9
driver, 9
enum, 3
equal

conditional, 7
escape, 6, 9
exit(), 4
exp(), 12
fabs(), 12
fclose, 4
fclose(), 14
fflush(), 4
fgets(), 4, 14
field, 9
file, 22
files, 14
float, 3
floating, 9
floor(), 12
fmod(), 12
fopen(), 4, 14
for(), 13
format, 8, 9
fprintf(), 5, 14
frexp(), 12
fscanf(), 4
fseek(), 5
function, 4, 15, 16

math, 12

pass, 24
passing, 16, 22
prototype, 16
returning, 16
rules, 2

gets(), 5
global, 10
glossary, 8
header, 9, 16
identifier, 10
if(), 5
ifdef, 13
include, 7
increment, 6, 10
indirectionoperator, 10
initialize, 10
int, 3, 9
integer, 9, 10
interpreter, 10
keywords, 3
labs(), 12
ldexp(), 12
ldiv(), 12
literal, 10
log(), 12
log10(), 12
long, 3, 9
machine, 10
magic, 10
main(), 2, 5
math, 12
math.h, 12
mnemonic, 10
modf(), 12
modular, 10
module, 10
modulus, 6
multiply, 6
n, 6
negation

logical, 6
new, 6
nnn, 6
not

conditional, 7
null, 6
object, 10
offset, 10
operator, 6
or

conditional, 6
logical, 6

pointer, 10, 15, 23
pow(), 12
preprocessor, 10
printf(), 5
printing, 14
pseudocode, 10
rand(), 12
random, 11
random(), 12
randomize(), 12
reference, 16, 18
remainder, 11
return, 16
rewind(), 5
rules, 1
sample, 13
scanf(), 5, 23
shift, 6
short, 3, 9
sin(), 12
sinh(), 12
sizeof(), 3
source, 11
sqrt(), 12
srand(), 12
string

pass, 18
strings, 2
struct, 19, 20

using, 25
structure, 11, 21
subscript, 11
switch(), 13
symbolic, 11
tab, 6
tan(), 12
tanh(), 12
trig, 12
unary, 11
unsigned, 4, 9
variable

rules, 2
void, 4, 16
while(), 13, 14
word, 11

RULES

braces { } determine the beginning and end of a function body

called function In the parenthesis of the function header line (where it appears at the end of the
program) each variable is declared with its variable type. The default is
integer. i.e. int max_int(float x, float y) p209 The passed

page 2 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

variables need not have the same name as their counterparts in the main
function. A function header never ends with a semicolon.

case C is case-sensitive

comments comments may not be nested

declarations Declaration statements may go before function main() for global variables,
within main() where they apply only to that function, or within called functions.

 char ch = 'a';

A character variable ch is declared and
assigned an initial value of a. A
character variable holds only one
character unless it is an array as below.

 char test[5] = "abcd";

Leave room for the end of string marker
/0. This array cannot be modified using
assignment statements but can be
modified using strcpy().. p345

 char *test = "abcd"; This array CAN be modified using
assignments and can hold a greater
number of characters than it receives on
declaration. strcpy() can be used
provided that it does not exceed the
number of places occupied by the
existing string. p345

 FILE *my_file; Declares a pointer to a file (which will be
opened later). p427

 int distance;

int distance = 17;
Declares distance as an integer
variable. In the second example, the
variable is declared as well as initialized
with a value. It is a good practice to do
this.

 long bignum; Declare bignum as a long integer.

function

function name cannot be a keyword (p.15), conforms to identifier rules, always followed by
parenthesis (), should be mnemonic, traditionally in lowercase but not
required.

identifiers composed of up to 31 letters, digits, and underscores, beginning with a letter or
underscore, no blank spaces

main() each program must have one and only one main function

semicolon ; follows each statement

strings are enclosed in double quotes ""

arithmetic operations If both operands are integers, the result is an integer. If one or more operands
is a floating point or double precision value, the result is a double precision
value. This will be on the test. When dividing two integers, the fractional result
is dropped, i.e. 9/5 = 1.

variable must begin with a letter or underscore, may contain only letters, underscores, or
digits, no blanks, commas or special symbols, maximum length 31 characters.
Additionally, the instructor prefers they not begin with an underscore and not
be more than about 15 characters in length.

page 3 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

KEYWORDS

auto

break instructs the program to exit the current loop

case

char represents the character data type typically using 1 byte of storage for values
from -128 to +127, may be used in a declaration statement.

const

continue

default

do

double represents the double precision floating point data type typically using 8 bytes
of storage for values up to 1.797693e+308.

else

enum a specifier which creates an enumerated data type, which is a user-defined list
of values that is given its own data type name, p.440. The statement consists of
the specifier followed by an optional name for the data type and a listing of
acceptable values for the data type, i.e. enum time {am, pm};

extern

float represents the floating point data type typically using 4 bytes of storage for
values up to 3.37e+38, may be used in a declaration statement.

for

goto

if

int represents the integer data type typically using 2 bytes of storage for values up
to 32,767, may be used in a declaration statement

long an integer type typically using 4 bytes of storage for values up to
2,147,483,647, may be used in a declaration statement. May also be combined
with unsigned.

register

return

short an integer type typically using 2 bytes of storage for values up to 32,767, may
be used in a declaration statement.

signed

sizeof() an operator that returns the number of bytes of the object or data type included
in the parentheses, i.e. sizeof(num1) sizeof(long int)

static

struct

switch

typedef

union

page 4 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

unsigned an integer type typically using 2 bytes of storage for positive only integers 0 to
65,535. used in a declaration statement. May also be combined with long.

void There is no value. When placed before the function name, it means no value
will be returned; when placed within the parenthesis it means no value will be
given to the function.

volatile

while

FUNCTIONS

The type of data to be returned by the function is given first, i.e. int max_int() . The default type is
integer. void means no value is returned. Parameters and input data type go inside the parenthesis, i.e.
max_int(float x, float y) or use void if there are no parameters.

exit() terminates the program and flushes output file buffers, closes open files, deletes
temporary files. The parentheses contain a status value returned to the calling
process, a 0 means a normal exit, other numbers indicate that an error occurred.

fclose() closes a file. This function breaks the link between the file's external and internal
names, releasing the internal file pointer name, which can then be used for another
file. p413 Example:

 fclose(data);

The argument should always be a pointer; quotes are not used because data is a
pointer and not a string.

fflush(stdin); clears the input butter. Use this line before reading character data with the scanf()
function.

fgets() Read n-1 characters from the file and store the characters in the string name.
Requires <stdio.h> Example:

fgets(stringname, n, filename);

stringname is the address of a character array. Ordinarily n will be the same
number that is specified in the variable declaration, which must also take into
account the end of string marker \0. The function reads characters until stringname
is filled or an end of line character \n is encountered. Although this character is not
supposed to end up in the string, it seemed to happen to be in program 4. A similar
function fgetc(filename) reads a single character from a file. p416

fopen() opens a file. In the example

 data = fopen("prog4.dat", "r");

data is the pointer to the external file, prog4.dat is the filename and r means
to read the file. If the file does not exist, NULL is returned. Other arguments are w
for writing to a new file, a for append, r+ for reading and writing, w+ for
erasing an existing file and opening a blank file for reading and writing, and a+ for
reading, writing, and appending to a file. p408

fscanf() reads data from a file. `Example:

 fscanf(MyFile, "%f", &Var);

where MyFile is the file to be read from %f is the data type and &Var is the
address of the variable in which it is to be stored. fscanf() stops reading when it
encounters whitespace, a newline character, or a data type mismatch. Multiple
arguments may be specified. p416 It has a great deal of additional functionality

page 5 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

and can be used to simply move forward in a file. see Nancy's book.

fseek() fseek(filename, 1L, SEEK_CUR);

Move ahead 1 character. The "L" is a cast conversion of "1" to long integer. p425

printf() sends data to the primary display device (the screen). Example:

printf("The numbers are %d and %d.\n", int1, int2);

Arguments for any format specifiers appear in the same order called at the end of
the statement.

fprintf() formats data and sends it to the printer. Example:

 fprintf(FilePtr,"\tHello World\n");

FilePtr is the pointer to a temporary printer file, \t is tab, and \n is newline.

gets() reads a string entered at the keyboard until encountering a carriage return (new line
character), then terminates the string with an end of string \o character, discarding
the new line \n character. p330 Actually in program 4 I had to remove the end of
line character from a string obtained using the fgets() function. For example:

 gets(Var);

will put the string entered at the keyboard into the character array Var.

if() if(statement)
 {
 assignment statement or function;
 assignment statement or function;
 }
 else
 {
 do this instead;
 this too;
 }

If "statement" is true then the following command(s) will be executed. The braces
are only required if there are multiple commands to execute. The else commands
(which are optional) are only executed if "statement" is false.

main() each program must have one and only one main function, tells the compiler where
program execution is to begin, calls program modules and determines the sequence
of events

printf() formats data and sends it to the standard system display device, such as the screen.
Example:

printf("The total of 6.0 and 15.0 is %4.1f.", 6.0 +
15.0);

This results in the display of "The total of 6.0 and 15.0 is 21.0" without the quotes.
The statement contains two arguments separated by commas. The "%4.1f" is a
conversion control sequence or format specifier, more specifically a control string
or control specifier. This tells the computer to insert the result of the next argument
here and gives data type and field width information as well. Multiple format
specifiers may appear and are associated with multiple arguments in the order
presented.

rewind() move to the start of the data file. The only argument is the pointer to the data file,
i.e. rewind(in_file); p425

scanf() retrieves data from the keyboard, for example scanf("%f", &num1); this
statement stops the program and waits for keyboard input. The user types in a
number and hits enter. the scanf() function retrieves this value and stores it in
variable num1 as a floating point decimal. The & symbol in front of the variable

page 6 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

name num1 indicates the address of num1 and is required in the scanf()
function except when reading a string into a character array. In this case, the array
name (without brackets) is the pointer name so no & (ampersand) is required. The
function will retrieve characters until it encounters a space or newline. (p330).

ESCAPE SEQUENCES

\' single quote

\" double quote

\\ backslash character

\b backspace

\f next page

\n start a new line

\nnn treat nnn as an octal number

\r carriage return

\t move to next tab setting

\0 null character marking the end of a string

OPERATORS

OPERATOR DEFINITION COMMENTS

% modulus the remainder after division

& logical bit-by-bit AND

| logical bit-by-bit OR

~ logical bit-by-bit negation

<< shift left

>> shift right

++ increment by one e.g.: a ++; means a=a+1;

-- decrement by one e.g.: a --; means a=a-1;

+= increment by __ e.g.: a += 2; means a=a+2;

-= decrement by __ e.g.: a -= 2; means a=a-2;

*= multiply by __ e.g.: a *= 2; means a=a*2;

/= divide by __ e.g.: a /= 2; means a=a/2;

|= OR with and update e.g.: a |= 2; means a=a|2;

&= AND with and update e.g.: a &= 2; means a=a&2;

<<= shift left __ times e.g.: a <<= 2; means a=a<<2;

>>= shift right __ times e.g.: a >>= 2; means a=a>>2;

&& AND, conditional

|| OR, conditional

page 7 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

! NOT, conditional

== equal to, conditional

!= not equal to, conditional

OTHER COMMANDS

/* start of a comment, ends with */

signals an instruction to the preprocessor

#define a preprocessor statement to equate the symbolic constant in the statement
with the information or data following it, i.e. #define SALESTAX 0.05
means give the constant SALESTAX the value of 0.05. Wherever
SALESTAX appears in the program, the value of 0.05 will automatically be
substituted. Define statements are not followed by a semicolon and they may
be found in include files.

#include<stdio.h>

#include<stdlib.h>
preprocessor statements to include header files. These two are common to
most programs.

page 8 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

GLOSSARY

address the value identifying a memory location or the location of the first byte of
memory in a variable. The symbol & is the address operator and returns the
address of a variable when placed in front of the variable name, i.e. adr =
&num1;

algorithm step-by-step description of how to perform a computation

argument data passed to a function by placing within the parenthesis. Multiple arguments
are separated by commas.

assignment operator, p84 = assign the value on the right to the variable on the left

+= add the value on the right to the value on the left and store in the variable
on the left

-= subtract the value on the right from the value on the left and store in the
variable on the left

*= multiply the value on the right by the value on the left and store in the
variable on the left

/= divide the value on the left by the value on the right and store in the
variable on the left

%= multiply the value on the left by the percentage on the right and store in the
variable on the left

see also increment operator, decrement operator

assignment statement tells the computer to store a value into a variable, i.e. num1 = 62; or
result = num1 + num2;

atomic data value a value that is considered a complete entity by itself and is not decomposable
into a smaller data type that is supported by the language. For example,
although an integer can be decomposed into individual digits, C does not have
a numerical digit data type so an integer is an atomic data type.

binary operator requires two operands, i.e. multiplication, division, addition, subtraction,
remainder

bit the smallest storage unit of a computer, storing a 0 or a 1

byte a group of bits. This usually consists of 8 bits, resulting in 256 possible
combinations.

character code the patterns of 0s and 1s used to represent letters, single digits, and other single
characters, i.e. the ASCII code.

character type letters of the alphabet, digits, and special symbols. A single character constant
is any one letter, digit, or special symbol enclosed by single quotes like '!' or
'A'.

coding converting an algorithm into a computer program

compiled language a programming language in which all commands are translated before any are
executed

conversion character the last character(s) in a conversion control sequence or format specifier.
Conversion characters are: d integer, ld long integer, u unsigned integer, f
floating point, lf double precision, o octal, x hexadecimal, e exponent,
g exponent or float—whichever is shorter, c character, p address, s string

conversion control always begins with a % symbol and ends with a conversion character, i.e. %d

page 9 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

sequence or format
specifier

means its an integer. Additional formatting characters can be placed between
the % symbol and the conversion character, i.e. %7.2f

counting statement COUNT = COUNT + 1 see increment operator

data types The 4 basic data types are integer, floating point, double precision, and
character.

data types, integer long integer, short integer, and unsigned integer. Long integer allows the value
to surpass the maximum 32,767 limit of a 2-byte integer. Short integer may or
may not conserve memory space. Unsigned integers are positive integers only
which allows values of 0 to 65,536 in a 2-byte memory area. Declaration
statements are: long int var1; short int var2; unsigned
int var3. The word "int" may not be required in the statement. The
actual size of these integers varies with the computer but may be determined
with the sizeof() command. Short int may be the same size as int. When
the date is converted to an integer number representing the number of days
since the turn of the century, a regular integer does not work for dates past
1987.

declaration statement appears immediately after the opening brace of a function and ends with a
semicolon. used to name and define the data type that can be stored in each
variable, i.e. int total; float firstnum; double secnum;
char ch; Multiple variables of the same type can be assigned in one
declaration statement, i.e. char ch1, ch2, ch3; The space after each
comma is not required. A declaration statement can also be used to store an
initial value into the variable, i.e. int num1 = 15; char ch1 =
'a'; A declaration statement for pointer to an integer could look like: int
*g_ptr;

decrement operator --COUNT means the same as COUNT = COUNT - 1

definition statement a declaration statement that defines how much memory is needed for data
storage, i.e. int total; float firstnum; double secnum;
char ch; are all definition statements as well as being declaration
statements

double precision negative or positive numbers having a decimal point. Has greater storage
allocation than floating point, to 1.797693e+308 using 8 bytes of memory.

driver function tells the other functions the sequence in which they are to operate, describes
main()

escape sequence in C language, a backslash followed by a character. The backslash is the
escape which means to escape from the normal interpretation of the character
which follows

field width specifier Defines the width of the field, i.e. 10.3 means that a floating point number
will be displayed with a total of 10 digits including spaces and decimal point
and will have 3 places following the decimal.

floating point negative or positive numbers having a decimal point. Has smaller storage
allocation than double precision, to 3.383+38 using 4 bytes of memory.

format modifier may be used in a conversion control sequence or format specifier immediately
after the % symbol, i.e. %-+10d means left-justify (-) the display and include a
+ symbol if the value is positive (+). (By default, the - symbol is displayed for
negative numbers anyway.) The # format modifier forces octal and
hexadecimal numbers to be printed with a leading 0 and 0x respectively.

formula an algorithm written in mathematical equations

function header line the first line of a function, tells 1) what type of data, if any, is returned from the
function, 2) the name of the function, 3) what type of data, if any, is sent into

page 10 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

the function

global variable a variable declared before the main function, allowing it to be used in any
function in the program.

header file a file containing information to be placed at the top of a program using the
#include command

identifier a combination of letters, digits and underscores used as function names,
variables or to name other elements of the C language

increment operator ++COUNT; means the same as COUNT = COUNT + 1;

k = ++n; increment n by 1 and assign the value to k

k = n++; assign n to k and then increment n by 1

indirection operator The indirection operator * when placed in front of a variable name in the
declaration statement indicates that it is a pointer variable, see pointer variable.

initialize assign a value to a variable for the first time.

integer value Also called integer constant in C, is any positive or negative number without a
decimal point. The maximum size of an integer varies by computer and
depends on the storage area allotted. 1 byte: -128 to 127, 2 bytes: -32768 to
32767, 4 bytes: -2147483648 to 2147483647. Use the sizeof operator to
determine the number of bytes allocated for each integer value.

interpreted language a programming language in which each statement in the source program is
translated individually and executed immediately

interpreter the program which translates a source program into machine code

literal data any data in a program that explicitly identifies itself, such as constants 2 and
3.1416.

machine language consists of 1s and 0s

magic number a literal value that appears many times in a program

mnemonic designed as a memory aid

modular program a program whose structure consists of interrelated segments arranged in a
logical and easily understandable order

module a subprogram within a main program which carries out usually one or two
functions

number code the patterns of 0s and 1s used to represent numbers, i.e. two's complement for
example.

object program the machine language version of a source program

offset a number or variable referring to the number of addresses beyond the starting
address of an array that a particular address is found. For example in the
expression *(g_ptr + 3) the number 3 is the offset and the expression
points to the third address past the initial array element. p307,8

pointer variable a variable used to store the address of another variable, i.e. chr_point =
&ch A pointer variable is declared according to the type of the variable to
which it points, i.e. char *chr_point; The indirection operator *
denotes that chr_point is a pointer variable.

preprocessor command performs some action before the compiler translates the source program into
machine code, begins with the # sign

pseudocode an algorithm written in plain English

page 11 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

random access Any character can be read without first reading everything before it.

remainder an arithmetic operation using the operator "%", i.e. 9 % 4 = 1.

source program the computer program before compiling

structure 1) the program's overall construction
2) the form used to carry out individual tasks within a program

subscript notation If num_ptr is declared as a pointer variable, the expression *(num_ptr +
I) can also be written in subscript notation as num_ptr[I].

symbolic name,
symbolic constant,
named constant

an identifier (all caps by convention) that is assigned a permanent value or
meaning using a #define statement, i.e. #define SALESTAX 0.05 No
semicolon follows in this example because the preprocessor would substitute
0.05; wherever SALESTAX was found if that were the case.

unary operator requires only one operand, i.e. make negative "-"

word one or more bytes grouped, i.e. the IBM computer has two bytes grouped into
one 16-bit word having one address. This has advantages of grouping at the
expense of cost and complexity.

page 12 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

MATH FUNCTIONS

#include <math.h>

int abs (int n) - Get absolute value of an integer.
double acos(double x) - Compute arc cosine of x.
double asin(double x) - Compute arc sine of x.
double atan(double x) - Compute arc tangent of x.
double atan2(double y, double x) - Compute arc tangent of y/x.
double ceil(double x) - Get smallest integral value that exceeds x.
double cos(double x) - Compute cosine of angle in radians.
double cosh(double x) - Compute the hyperbolic cosine of x.
div_t div(int number, int denom) - Divide one integer by another.
double exp(double x) - Compute exponential of x.
double fabs(double x) - Compute absolute value of x.
double floor(double x) - Get largest integral value less than x.
double fmod(double x, double y) - Divide x by y with integral quotient and return remainder.
double frexp(double x, int *expptr) - Breaks down x into mantissa and exponent of no.
labs(long n) - Find absolute v alue of long integer n.
double ldexp(double x, int exp) - Reconstructs x out of mantissa and exponent of two.
ldiv_t ldiv(long number, long denom) - Divide one long integer by another.
double log(double x) - Compute log(x).
double log10(double x) - Compute log to the base 10 of x.
double modf(double x, double *intptr) - Breaks x into fractional and integer parts.
double pow(double x, double y) - Compute x raised to the power y.
int rand(void) - Get a random integer between 0 and 32.
int random(int max_num) - Get a random integer between 0 and max_num.
void randomize(void) - Set a random seed for the random number generator.
double sin(double x) - Compute sine of angle in radians.
double sinh(double x) - Compute the hyperbolic sine of x.
double sqrt(double x) - Compute the square root of x.
void srand(unsigned seed) - Set a new seed for the random number generator (rand).
double tan(double x) - Compute tangent of angle in radians.
double tanh(double x) - Compute the hyperbolic tangent of x.

page 13 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

SAMPLE CODE

for Statement.

int ii; /* a counter */

for(ii=0;ii<10;ii++) /* Do it 10 times */
{ /* { for more than one */
 <statement>; /* some statement */
 <statement>; /* some statement */
}

while Statement.

int ii = 0; /* a counter */

while(ii<10) /* While this is true */
{ /* { for more than one */
 <statement>; /* some statement */
 <statement>; /* some statement */
 ii++; /* increment ii */
}

switch Statement.

switch(var) /* some expression */
{ /* */
 case 1: /* if var = 1 */
 <statement>; /* execute statements */
 <statement>; /* if var = 1 */
 break; /* exit switch stmnt */
 case 2: /* if var = 2 */
 <statement>; /* execute statements */
 <statement>; /* if var = 2 */
 break; /* exit switch stmnt */
 default: /* otherwise */
 <statement>; /* execute statements */
}

The default statement is optional. If break instructions are not used, program execution will continue
into subsequent case areas even if they do not test true.

page 14 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

ifdef Statement.

/* Uncomment the appropriate statement to make quick changes in
 * code definitions */

#define method1 /* one way */
//#define method2 /* another way */

ifdef method1 /* If method1 is */
extern int SomeThing; /* uncommented above */
#define THIS 10 /* */
#define THAT 20 /* */
#endif

ifdef method2 /* If method2 is */
extern int AnyThing; /* uncommented above */
#define THIS 5 /* */
#define THAT 7 /* */
#endif

Basic Printing.

FILE *Print; /* declare the pointer to a file where
 data will be sent for printing. */

if((Print=fopen("lpt1","w"))==NULL) /* These 5 lines */
 { /* are used in all */
 printf("\nPRINTER IS NOT READY!!!"); /* programs to open */
 exit(0); /* and check the */
 } /* printer output. */

fprintf(Print,"\t THOMAS PENICK\n"); /* print something */

fprintf(Print,"\f"); /* advance the printer to the next page */
fclose(Print); /* close the print file */

Access a data file.

FILE *Data; /* declare the pointer to the data file */

Data = fopen("prog4.dat", "r"); /* open the data file */
if (Data==NULL) /* check the data file */
 {
 fprintf(Print,"\nThe file prog4.dat cannot be opened.\n");
 /* error message */
 exit(1); /* stop the program due to an error (1) */
 }

fclose(Data); /* close the data file */

page 15 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

Read and print from a data file.

while(fscanf(Data,"%ld",&ID_Num)!=EOF) /* until the end of the file */
 /* also read an integer. */
 /* "Data" points to the file */
 {
 fgets(Name1,25,Data); /* read string into "Name1" */
 strcopy(Name2, Name1); /* call a function to remove

/* the end of line char. */
 fprintf(Print,"\t%d.%-25s\t%ld\n",Line_Num,Name2,ID_Num);
 /* print a line of data */
 }

Programmer-defined called function to remove the end of line character from a string (character
array). This is similar to the example on p332.

void strcopy(char [], char []); /* declare the subroutine */
 /* before main function */

void strcopy(char String2[], char String1[]) /* begin called funct. */
{
int Cnt = 0
while (String1[Cnt] != '\n')
 {
 String2[Cnt] = String1[Cnt];
 ++Cnt; /* increment the counter */
 }
String2[Cnt] = '\0'; /* terminate the string */
return;
}

Load a pointer with the address of the first element of an array.

int nums[100]; /* create an array */
int *nptr; /* create a pointer */
nptr = &nums[0]; /* load the address */
nptr = nums; /* another way, same as above*/

page 16 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

Types of Functions in C Programming

The following examples illustrate various methods of passing values to functions. Except for the function
"strcopy()", these are not working functions (code has been omitted).

Subtopics

A FUNCTION WHICH PASSES NO VALUE AND RETURNS NO VALUE
A FUNCTION WHICH PASSES TWO FLOATS AND RETURNS A FLOAT
A FUNCTION WHICH PASSES AN INTEGER ARRAY AND RETURNS AN INTEGER
A FUNCTION WHICH PASSES VARIABLES BY REFERENCE USING ADDRESSES
A FUNCTION WHICH PASSES A STRING BY REFERENCE
A FUNCTION WHICH PASSES A STRUCTURE BY NAME
A FUNCTION WHICH PASSES A STRUCTURE BY REFERENCE USING A POINTER
A FUNCTION WHICH PASSES A STRUCTURE ARRAY
A FUNCTION WHICH PASSES A FILE NAME

A FUNCTION WHICH PASSES NO VALUE AND RETURNS NO VALUE

A function may be declared (function prototype) globally or within the calling function:

FUNCTION PROTOTYPE void PrintHead(void);
FUNCTION CALL PrintHead();
FUNCTION HEADER void PrintHead(void)
 {
RETURN STATEMENT return;
 }

A FUNCTION WHICH PASSES TWO FLOATS AND RETURNS A FLOAT

A function can return at most one value:

FUNCTION PROTOTYPE float find_max(float, float);
FUNCTION CALL maxmum = find_max(firstnum,secnum);

The variables used in the function need not and should not have the same names as those
passed to the function:

FUNCTION HEADER float find_max(float num1, float num2)
 {
DECLARE A VARIABLE float Result;
RETURN STATEMENT return(Result);
 }

page 17 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES AN INTEGER ARRAY AND RETURNS AN INTEGER

An alternate method would be to pass by reference using a pointer. In this example the last
argument is an integer telling the function how many elements are in the array:

FUNCTION PROTOTYPE int find_max(int vals[], int);
FUNCTION CALL biggun = find_max(nums,5);

The variables used in the function need not and should not have the same names as those
passed to the function:

FUNCTION HEADER int find_max(int nums[], int HowMany)
 {
DECLARE A VARIABLE int Result;
RETURN STATEMENT return(Result);
 }

A FUNCTION WHICH PASSES VARIABLES BY REFERENCE USING ADDRESSES

FUNCTION PROTOTYPE void sortnum(double*, double*);
FUNCTION CALL sortnum(&FirstNum, &SecNum);
FUNCTION HEADER void sortnum(double *Num1, double *Num2)
 {
RETURN STATEMENT return;
 }

page 18 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES A STRING BY REFERENCE

There is no way that I can find of returning a string from a function. However, if the address
of the string is passed, then the function can operate on the string. This example is a working
function which takes the string referenced by the second argument, removes the carriage
return from the end of it and "returns" it by assignment to the first argument. (This is used for
a string which has been retrieved from a text file using the fgets() function):

FUNCTION PROTOTYPE void strcopy(char [], char []);

The calling function must have declared two appropriate character arrays.

 char Name1[25];
 char Name2{25];
FUNCTION CALL strcopy(Name2,Name1);
FUNCTION HEADER void strcopy(char Str2[], char Str1[])
 {
DECLARE A VARIABLE int Cnt = 0;
 while (Str1[Cnt] != '\n')
 {
 Str2[Cnt] = Str1[Cnt];
 ++Cnt;
 }

Nothing is returned, but "Str2" is the new version of the original "Name1" and is available in
the calling function as "Name2".

RETURN STATEMENT return;
 }

page 19 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES A STRUCTURE BY NAME

Here "class_list" is a structure type declared globally:

STRUCTURE DECLARATION struct class_list
 {
 char Name[31];
 long ID_Num;
 char Class[9]
 };

The function prototype may be declared globally or within the calling function. Here
"class_list" is the type of structure from the structure prototype (declared globally), not the
specific structure itself:

FUNCTION PROTOTYPE void PrintReport(struct class_list);

A single structure of type "class_list" is created in the calling function (if not globally) and
named "load":

STRUCTURE IS CREATED struct class_list load;

The structure "load" is passed to the function:

FUNCTION CALL PrintReport(load);

The structure prototype name is again used in the function header:

FUNCTION HEADER void PrintReport(struct class_list N)
 {
REFERENCES TO ELEMENTS N.Name
 N.ID_Num
 N.Class
RETURN STATEMENT return;
 }

page 20 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES A STRUCTURE BY REFERENCE USING A POINTER

Here "class_list" is a structure type declared globally as before:

STRUCTURE DECLARATION struct class_list
 {
 char Name[31];
 long ID_Num;
 char Class[9]
 };

The function prototype may be declared globally or within the calling function. Here
"class_list" is the type of structure from the structure prototype (declared globally), not the
specific structure itself. The * indicates that a pointer to the structure will be passed:

FUNCTION PROTOTYPE void PrintReport(struct class_list *);

A single structure of type "class_list" is created in the calling function (if not globally) and
named "load":

STRUCTURE IS CREATED struct class_list load;

The structure is assigned to a pointer.

A POINTER IS DECLARED struct class_list *Ptr;
A POINTER IS ASSIGNED Ptr = &load;

The pointer to the structure is passed to the function.

FUNCTION CALL PrintReport(Ptr);

A corresponding pointer "P" is declared in the function header:

FUNCTION HEADER void PrintReport(struct class_list *P)
 {
REFERENCES TO ELEMENTS P->Name
 P->ID_Num
 P->Class
RETURN STATEMENT return;
 }

page 21 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES A STRUCTURE ARRAY

Here "c_list" is a structure type declared globally as before:

STRUCTURE DECLARATION struct c_list
 {
 char Name[31];
 long ID_Num;
 char Class[9]
 };

The function prototype may be declared globally or within the calling function. Here "c_list"
is the type of structure from the structure prototype (declared globally), not the specific
structure itself. The * indicates that a pointer to the structure will be passed:

FUNCTION PROTOTYPE void PrintReport(struct c_list *);

A pointer to a structure of type "c_list" is created.

A POINTER IS DECLARED struct c_list *Ptr;

A structure array of type "c_list" is created in the calling function and assigned to pointer
"Ptr" and memory is allocated. "Elements" is the number of elements in the array:

STRUCTURE ARRAY IS CREATED
Ptr = (struct c_list *) malloc(Elements * sizeof(struct c_list));

The pointer to the structure is passed to the function.

FUNCTION CALL PrintReport(Ptr);

A corresponding pointer "P" is declared in the function header:

FUNCTION HEADER void PrintReport(struct c_list *P)
 {
REFERENCES TO ELEMENTS P[i].Name
 P[i].ID_Num
 P[i].Class
RETURN STATEMENT return;
 }

page 22 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

A FUNCTION WHICH PASSES A FILE NAME

A file pointer is declared in the calling function:

POINTER DECLARATION FILE *Data;
FILE NAME ASSIGNMENT Data = fopen("class.dat", "r+");

The argument is a pointer to a file:

FUNCTION PROTOTYPE void ReadFile(FILE *)
FUNCTION CALL ReadFile(Data);

A new file pointer is declared in the function header:

FUNCTION HEADER void ReadFile(FILE *F)
 {
RETURN STATEMENT return;
 }

page 23 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

USING POINTERS IN C

A pointer is a variable that contains an address.

How to Interpret & and * Symbols

Symbol Read as…

&_____ the pointer to the variable ______
*_____ the value held in the variable pointed to by ______
(____*) cast the pointer that follows into a pointer of type ______
_____ * a pointer of type _____ (this is used in a function prototype)

DECLARATION STATEMENT

A pointer variable is declared using the data type of the variable to whose address it points. This is
so that the computer will know how many storage locations to access when it uses the variable
pointed to. So if we have an integer variable num and we want a pointer variable addr to store its
address, then the declaration statement for the pointer would be:

int *addr;

This statement means, “I am declaring a pointer called addr of type integer.” The address of any
integer variable can be stored in the pointer variable addr.

If we add 1 to addr, then it will point to the next integer. In other words, because the pointer has
been declared an integer type (16 bits), incrementing the pointer causes the address to shift by two
bytes in this case.

ASSIGNMENT STATEMENT

addr = #

The pointer addr now contains the address of the variable num and *addr refers to the value
held in the variable num. Obtaining a value in this way is known as indirect addressing and the
symbol * is the indirection operator.

READING THE VALUE OF THE VARIABLE POINTED TO

value = *addr;

The variable value now contains the value stored at address addr.

SCANF()

The scanf() function requires the use of addresses of variables.

syntax: scanf("control string(s)", &variable(s));
i.e.: scanf("%d %d", &num1, &num2);

page 24 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

PASSING ADDRESSES TO FUNCTIONS

To pass addresses to a function (referred to as pass by reference):

void sortnum (double *, double *);
 /* function prototype */

sortnum(&firstnum, &secnum); /* the function call */

sortnum(double *num1, double *num2)
 /* the function header */
 /* declaring pointers */
 /* to receive passed */
 /* addresses */

When the values which are pointed to are used by the function, the indirection operator is used, i.e.
*num1 and *num2. The function may change these values even though they are not global.

return; /* this function would */
 /* not "return" a */
 /* value */

POINTERS IN ARRAYS

If we have an array, grades[], we can store the address of grades[0] in a pointer:

gptr = &grades[0];
or

gptr = grades; /* equivalent to above */

Then *gptr would refer to the value stored in grades[0]. We can refer to the values stored in
other parts of the array by using offsets. *(gptr + 1) refers to the value stored in
grades[1] and could also be written gptr[1] even though gptr was not declared as an
array. (page 309) This value could also be referred to by *(grades + 1) and refers to the
second value in the array regardless of the number of storage locations required by the variable
type. A distinction between the latter and reference by pointer is that the address stored in a
pointer can be changed. gptr is a pointer and grades is a pointer constant. Both of these point
to the address of grades[0].

gptr could be made equivalent to &grades[1] by the statement:

gptr++; /* increment the address */
 /* in gptr */

or
gptr++; / this permits first */
 /* utilizing the value */
 /* in a statement (not */
 /* included here). To */
 /* increment before */
 /* using you could use */
 /* *++gptr; */

or
gptr = &grades[1]; /* assignment statement */

page 25 of 25

Tom Penick tom@tomzap.com www.teicontrols.com/notes C_ProgrammingNotes.pdf 11/29/2001

POINTERS IN STRUCTURES

Prototype for structure Student Records:

struct StudentRecord /* Structure for holding */
{ /* student's record. */
 char Name[31]; /* Student name */
 long ID_Num; /* Student ID number */
 char Class[9]; /* Student's class */
}; /* Yes, a semicolon. */

A structure has been declared above, but no memory has been allocated. This is only a template
for a structure. Structures of this type may now be created using the template name,
StudentRecord.

struct StudentRecord SR1,SR2; /* Two structures */

The above statement creates two structures of the type StudentRecord. This statement could have
been combined with the structure declaration as follows:

struct StudentRecord /* Structure for holding */
{ /* student's record. */
 char Name[31]; /* Student name */
 long ID_Num; /* Student ID number */
 char Class[9]; /* Student's class */
} SR1,SR2; /* Two structures. */

In this case, the template name StudentRecord is unnecessary if no additional structures of this
type are to be created. It can be omitted.

Arrays of structures may be created:

struct StudentRecord StuRec[10]; /* Array of 10 structs */

Structure pointer declaration:

struct StudentRecord *Recs;

The above statement creates a pointer called Recs that can point to a structure of type
StudentRecord.

Create a single structure that is pointed to by the pointer Recs:

Recs=(struct StudentRecord *)malloc(sizeof(struct SR1));

Or create a structure array:

Recs=(struct StudentRecord *)malloc(HowMany * sizeof(struct SR1));

Single structure members may be addressed in this way:

Recs.ID_Num

Structure array members must be addressed using ->:

Recs[i]->ID_Num

