STATE VECTOR MODEL

An example of finding the state vector model of a system given the transfer function in the s-domain.

The Problem:

Given the transfer function:

$$
G(s)=\frac{100}{s^{2}+3 s+1}
$$

find \mathbf{A}, \mathbf{b}, and \mathbf{D} of the state vector model.

State Vector Model:

$$
\begin{array}{ll}
& \begin{array}{l}
X(t)=\text { state vector, consisting of the output signal and its } \\
\text { derivatives }
\end{array} \\
\dot{X}(t)=\text { first derivative of the state vector } \\
A=\text { a square matrix } \\
b=\text { a vector } \\
u(t)=\text { system input signal }
\end{array}
$$

1) Write the transfer function as a function of output divided by the input:

$$
G(s)=\frac{C(s)}{U(s)}=\frac{100}{s^{2}+3 s+1}
$$

2) Cross multiply:

$$
s^{2} C(s)+3 s C(s)+C(s)=100 U(s)
$$

3) Convert to the time domain (inverse Laplace transform):

$$
\ddot{c}(t)+3 \dot{c}(t)+c(t)=100 u(t)
$$

4) Pick a solution:

$$
\text { Let } x_{1}(t)=c(t), \quad x_{2}(t)=\dot{c}(t)
$$

The solution is not unique, but we just always use this one. Note that $x_{1}(t)$ and $x_{2}(t)$ are elements of the state vector $X(t)$ and that there are two elements in this case because of the $2^{\text {nd }}$ order polynomial in the denominator of the transfer function. If the polynomial was $3^{\text {rd }}$ order, we would include $x_{3}(t)=\ddot{c}(t)$ and so on.

5) Solve for $\dot{X}(t)$:

We want to get $\dot{X}(t)$ in terms of x and u.
It can be seen from step 4 that $\dot{x}_{1}(t)=x_{2}(t)$.
It can also be seen from step 4 that $\dot{x}_{2}(t)=\ddot{c}(t)$.
Solving the expression in step 3 for $\ddot{c}(t)$ we have $\ddot{c}(t)=100 u(t)-3 \dot{c}(t)-c(t)$.
We can express this in terms of x and u to get $\dot{x}_{2}(t)=100 u(t)-3 x_{2}(t)-x_{1}(t)$

6) Back to the state vector model:

State vector model: $\dot{X}(t)=A X(t)+b u(t)$
State vector model showing matrices: $\left[\begin{array}{l}\dot{x}_{1}(t) \\ \dot{x}_{2}(t)\end{array}\right]=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]+\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] u(t)$.
Carrying out the operations: $\begin{aligned} & \dot{x}_{1}(t)=a_{11} x_{1}(t)+a_{12} x_{2}(t)+b_{1} u(t) \\ & \dot{x}_{2}(t)=a_{21} x_{1}(t)+a_{22} x_{2}(t)+b_{2} u(t)\end{aligned}$

7) Plugging in to the state vector model for matrices A and b :

Using the results of steps 5 and 6 we can find the values for the matrices \mathbf{A} and \mathbf{b}.

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t): \quad \dot{x}_{1}(t)=\underbrace{a_{11}}_{0} x_{1}(t)+\underbrace{a_{12}}_{1} x_{2}(t)+\underbrace{b_{1}}_{0} u(t) \\
& \dot{x}_{2}(t)=100 u(t)-3 x_{2}(t)-x_{1}(t): \quad \dot{x}_{2}(t)=\underbrace{a_{21}}_{-1} x_{1}(t)+\underbrace{a_{22}}_{-3} x_{2}(t)+\underbrace{b_{2}}_{100} u(t) \\
& \text { So matrices } \mathbf{A} \text { and } \mathbf{b} \text { are: } \quad \mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -3
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
100
\end{array}\right]
\end{aligned}
$$

8) Finding matrix D from the output equation:

The output equation is $c(t)=\mathbf{D} X(t)$.
The output equation in matrix form is $c(t)=\left[\begin{array}{ll}d_{1} & d_{2}\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$.
Carrying out the multiplication we have $c(t)=d_{1} x_{1}(t)+d_{2} x_{2}(t)$.
We already know from step 4 that $x_{1}(t)=c(t)$.
So we can determine the matrix values $c(t)=\underbrace{d_{1}}_{1} x_{1}(t)+\underbrace{d_{2}}_{0} x_{2}(t)$
Therefore $\mathbf{D}=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
As it turns out, matrix \mathbf{D} is predictable. The first element is always 1 and the remaining elements are zeros. The number of elements is equal to the order of the polynomial in the denominator of the transfer function.

