MASON'S GAIN RULE

An example of finding the transfer function of a system represented by a block diagram using Mason's rule. This problem has also been worked using a matrix solution; see the file MatrixSolution.pdf.

The Problem:

Given the system:

Mason's Gain Rule:

$M=$ transfer function or gain of the system
$M_{j}=$ gain of one forward path

$$
M=\frac{\sum_{j} M_{j} \Delta_{j}}{\Delta}
$$

$j=$ an integer representing the forward paths in the system
$\Delta_{j}=1$ - the loops remaining after removing path j. If none remain, then $\Delta_{j}=1$.
$\Delta=1-\Sigma$ loop gains $+\Sigma$ nontouching loop gains taken two at a time $-\Sigma$ nontouching loop gains taken three at a time $+\Sigma$ nontouching loop gains taken four at a time - . . .

1) Find the forward paths and their gains:

A forward path is a path from $R(s)$ to $C(s)$ that does not cross the same point more than once. There are two forward paths in this example, so we have a $j=1$ and $\mathrm{a} j=2$. The two paths are:

$$
M_{1}=G_{1} G_{2} G_{3} \quad \text { and } \quad M_{2}=G_{4}
$$

2) Find the loops and their gains:

A loop is a closed path that can be negotiated without crossing the same point more than once. There are five loops in this example:
Loop $1=-G_{1} G_{2} H_{1}$
Loop $4=-G_{4} H_{3}$
Loop $2=-G_{2} G_{3} H_{2}$
Loop $5=G_{4} H_{2} G_{2} H_{1}$
Loop $3=-G_{1} G_{2} G_{3} H_{3}$

3) Find the $\Delta_{j} \mathrm{~s}$:

If we eliminate the path $M_{1}=G_{1} G_{2} G_{3}$ from the system, no complete loops remain so:

If we eliminate the path $M_{2}=G_{4}$ from the system, no complete loops remain so:

$$
\Delta_{2}=1
$$

4) Find Δ :

Since there are no nontouching loop pairs in this example, Δ will just be one minus the sum of the loop gains:

$$
\Delta=1-\left[\left(-G_{1} G_{2} H_{1}\right)+\left(-G_{2} G_{3} H_{2}\right)+\left(-G_{1} G_{2} G_{3} H_{3}\right)+\left(-G_{4} H_{3}\right)+\left(G_{4} H_{2} G_{2} H_{1}\right)\right]
$$

The Solution:

$$
\text { Mason's Rule: } M=\frac{\sum_{j} M_{j} \Delta_{j}}{\Delta}
$$

Applying the formula for Mason's rule, we have the transfer function:

$$
\frac{C(s)}{R(s)}=M=\frac{G_{1} G_{2} G_{3}+G_{4}}{1+G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3} H_{3}+G_{4} H_{3}-G_{4} H_{2} G_{2} H_{1}}
$$

