LOGARITHMS AND EXPONENTIAL FUNCTIONS

Definition of Exponential Function: $f(x)=b^{x}$ where X and b are real numbers and $b>0$ and $b \neq 1$. The domain is the set of all real numbers and the range is the set of all positive real numbers.

Exponential Function Theorems:
$b^{x} b^{y}=b^{x+y}$
$\left(b^{x}\right)^{y}=b^{x y}$
$\frac{b^{x}}{b^{y}}=b^{x-y}$
$b^{x}>0$
$b^{x}=b^{y}$ if and only if $x=y$

An Inverse Function $f^{-1}(x)$ is the relation obtained by interchanging the components of the ordered pairs of a one-to-one function.

Definition of a Logarithm Function: The inverse of the exponential function, written $\log _{b} x=y$, where $x=b^{y} ; x>0, b>0, b \neq 1$. The domain is the set of all positive real numbers and the range is the set of all real numbers.

Common Logarithms: The values of $\log _{10} x$ are called common logarithms or logarithms to the base 10. The numeral 10 designating the base is usually omitted: $\log x=\log _{10} x$.

Common Logarithm Theorem: If k is any real number and x is any positive real number, then $\log _{x}\left(10^{k}\right)=k+\log _{x}$.

If $\log _{x}\left(10^{k}\right)=k+\log _{x}$ where k is an integer and x is a real number such that $1 \leq x<10$, then k is called the characteristic of $\log _{x}\left(10^{k}\right)$ and $\log _{x}$ is called the mantissa of $\log _{x}\left(10^{k}\right)$.

Natural Logarithmic Function $\quad f(x)=\log _{e} x=\ln x$ The natural number $\boldsymbol{e} \approx 2.71828182846$. To get this number on the calculator, press 1 INV $\ln x$. $\log _{e} x$ is written $\ln x \quad$ (read "el - en - ex")

$$
\begin{array}{ll}
e=\lim _{x \rightarrow 0}(1+x)^{1 / x} & \ln x=b \text { if and only if } e^{b}=x \\
\lim _{x \rightarrow 0^{+}} \ln x=-\infty & \lim _{x \rightarrow \infty} \ln x=\infty \\
\ln e^{x}=x & e^{a \ln b}=b^{a} \\
\ln x y=\ln x+\ln y & \ln \frac{x}{y}=\ln x-\ln y
\end{array}
$$

$\ln x^{y}=y \ln x$

Logarithms to other bases:

$$
\begin{array}{ll}
y=\log _{a} x \text { if and only if } & a^{y}=x \\
\log _{a} x y=\log _{a} x+\log _{a} y & \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\
\log _{a} x^{y}=y \log _{a} x & \log _{a} x=\frac{\log _{b} x}{\log _{b} a}
\end{array}
$$

A calculator can be used to evaluate an expression such as $\log _{2} 14$ by virtue of the fact that it is equivalent to $\ln 14 / \ln 2$.

Examples of Logarithms:

$$
\begin{aligned}
& \log _{10} 1000=3 \\
& \log _{2}\left(\frac{1}{16}\right)=-4 \\
& \log _{125}\left(\frac{1}{25}\right)=-\frac{2}{3}
\end{aligned}
$$

Miscellaneous: \in means is an element of.
Reference: Precalculus Mathematics CTC Library QA 39.2 G78, pp 184-201 Tom Penick tomzap@eden.com www.teicontrols.com/notes 12/14/97

